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ABSTRACT

Cordic based IIR digital �lters possess desirable properties

for VLSI implementation such as local connection, regu-

larity, and good �nite word-length behavior, but can't be

pipelined to �ner levels (such as bit or multi-bit levels) due

to the presence of feedback loops. In this paper, a pipelin-

ing method for the cordic based IIR digital �lters is pro-

posed using the constrained �lter design methods and the

polyphase decomposition technique. Using this method, the

�lter sample rate can be increased to any desired level.

1. INTRODUCTION

In recent years, rapid advances in VLSI technology have

had much impact on modern signal processing. Some of the

desirable properties for VLSI realization are regularity, local

connection and pipelinability. Orthogonal �lters are digital

IIR �lters whose internal computation scheme consists of

an orthogonal matrix transformation.

The normalized lattice �lter [1] and the scaled normalized

lattice �lter [2] are orthogonal �lters in the sense that the

denominator of the transfer function is implemented using

orthogonal building blocks based on the Schur algorithm.

But since the implementation of the numerator of the trans-

fer function in these �lters requires the use of readout taps,

this could result in numerical di�culties [3]. To overcome

this problem, the orthogonal double rotation (ODR) lattice

�lters [3] are developed such that both the numerator and

the denominator are implemented in terms of orthogonal

sections. These �lters possess good numerical properties,

lead to low sensitivity in the �lter passband, and eliminate

limit cycle oscillations. The normalized and ODR lattice

�lters have recently been pipelined in [2].

The cordic based IIR digital �lters [4] discussed here are

true cascaded orthogonal �lters. These �lters consist of a

cascade of 4{terminal orthogonal sections, with each section

implemented by an e�cient CORDIC algorithm [5]. The

ODR lattice �lters are not true cascaded orthogonal �lters

by this criteria, since they have 6{terminals for each cas-

caded section. Because of this, it is expected that the ODR

lattice �lters have much higher sensitivity in �lter stop band

compared to the cordic IIR �lters [4]. Similar to the ODR

lattice �lters, both the numerator and the denominator in

cordic digital �lters are also implemented using orthogonal
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sections, and these �lters have low sensitivity in both the

pass band and the stop band, leading to good numerical

properties over the entire frequency band. But these �lters

can't be pipelined at �ner levels (such as bit or multi-bit

levels) due to the presence of feedback loops. This greatly

restricts its applications for high speed and low power. In

this paper, a pipelining method for the cordic based IIR

digital �lters is proposed using the constrained �lter design

methods and the polyphase decomposition technique [2].

Using this method, the maximum �lter sample rate can be

increased to any desired level.

2. SYNTHESIS SKETCH OF CORDIC BASED

IIR DIGITAL FILTERS
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Figure 1. Cascade orthogonal �lter structure

The cordic based IIR digital �lters are developed for the

realization of any stable, passive digital rational real trans-

fer function in a cascaded interconnection of orthogo-

nal sections. Fig. 1 represents a typical �lter structure.

F (z) = P (z)=Q(z) is the desired Nth order transfer func-

tion. Q
#(z) = z

�N
Q(z�1), is the reverse polynomial of

Q(z). Each box is an orthogonal section, which could be

either a degree{1 section or a degree{2 section. Fig. 2 shows

the structure of the degree{1 and the degree{2 sections,

where the boxes in the �gure are planar rotation building

blocks shown in detail in Fig. 3. The dots go with the �rst

row of the matrix. Here, f�ig are �lter parameters, and

can be determined through the synthesis routine. Notice

that the whole �lter consists of only the planar rotation

blocks and storage elements. These rotation blocks can be

implemented using an e�cient CORDIC processor [5]. A

degree{1 section implements one zero of the transfer func-

tion, and a degree{2 section implements a pair of complex

conjugate zeros, since for real coe�cient transfer functions,

if a zero is complex, its complex conjugate must also be a

zero.

The �lter synthesis algorithm is based on a degree re-

duction procedure of the denominator polynomial of the

transfer function. If the zero is real, we perform a degree{1

reduction, which generates a degree{1 section implementing

the real zero, and results in a denominator polynomial with
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Figure 2. (a) Degree{1 section (b) Degree{2 section
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Figure 3. Planar rotation building block structure

degree reduced by one; if the zero is complex, we perform

a degree{2 reduction, which generates a degree{2 section

implementing the pair of complex conjugate zeros, and re-

sults in a denominator polynomial with degree reduced by

two. This degree reduction procedure is followed until we

implement all the zeros of the transfer function. This leads

to the structure in Fig. 1. Notice the zero implementing

order can be chosen at will. The �lter synthesis procedure

can be summarized as follows.

Let F (z) be the desired rational transfer function with

numerator P (z) and denominator Q(z). P (z) and Q(z) are

polynomials of degree N with real coe�cients. Let 
 =

f!i; i = 1; Ng be the collection of all zeros of P (z). Notice

the number of real zeros and pairs of complex conjugate

zeros in 
 will correspond to the number of degree{1 and

degree{2 sections in the synthesized �lter structure.

Algorithm

INPUT: Q(z);


OUTPUT: Filter structure with parameter set �

while (
 is not empty) dof
pick !i 2 


if (!i is real)

then f degree{1 reductionf
input: QN (z); !i
output: QN�1(z); f�1; �2gg

QN(z) = QN�1(z); 
 = 
� f!ig
� = � + f�1; �2gg

else f degree{2 reductionf
input: QN (z); !i; !

�

i

output: QN�2(z); f�1; �2; �3; �4gg
QN(z) = QN�2(z); 
 = 
� f!i; !

�

i g
� = � + f�1; �2; �3; �4gg

g 2

Example 1.

Consider a fourth{order transfer function

F (z) =
0:102 + 0:517z�1 + 0:830z�2 + 0:517z�3 + 0:102z�4

1:000 + 2:267z�1 + 1:821z�2 + 0:580z�3 + 0:070z�4

Here, 
 = f�2:727;�0:367;�0:996 + i0:090;�0:996 � i0:090g:

Following the above degree reduction procedure, we obtain

Q4(z) = [1:000 2:267 1:821 0:580 0:070]

Q3(z) = [0:367 0:696 0:405 0:052]

Q2(z) = [0:364 0:589 0:257]

Q0(z) = [0:313]:

Here, Q3; Q2; Q0 are the resulting polynomials after two

degree{1 and one degree{2 reductions. Fig. 4 shows the

detailed �lter structure.

� = f(�01; �02); (�11; �12); (�21; �22; �23; �24)g
= f(1:195; 3:122); (0:124; 1:943);

(0:536; 0:073; 0:531;�0:153)g

contains the �lter parameters in radians of the degree{1 and

degree{2 sections in the �gure from the right to the left.

3. PIPELINING OF CORDIC BASED IIR
DIGITAL FILTERS

From Fig. 4, we can see that the critical path of the �lter

goes forward and backward through the entire �lter struc-

ture, which contains 7 multiplication and 7 addition oper-

ations. As the cascaded stages increases, the critical path

will also increase. There are almost no pipelining in this

structure. Although we can use the retiming procedure to

transfer part of the delay around the loop, the maximum

sample rate can't be increased, since multiple clock cycles

are needed to process one sample. One approach to re-

ducing the feedback loop computation time is to introduce

a number of dummy transfer zeros at z = 0, so that the

feedback loop is cut short by the degree{1 section corre-

sponding to z = 0 in [6]. But, the pipelining level achieved

using this method is limited. In order to achieve arbitrary

level pipelining, the following transformation is considered.

Let F (zM ) be the desired �lter transfer function of the

form z
M . If we replace all the zM in F (zM) by z

0, we ob-

tain a new transfer function F (z0). Now we apply the �lter

synthesis algorithm of section 2 to the transformed transfer

function F (z0), and obtain the �lter structure �(z0), which

consists of only rotation blocks and storage elements z
0.

Due to the computability of the IIR digital �lters, there

exists at least one storage element in every feedback loop.

Notice F (z0) is derived from F (zM ) by simply replacing

all the zM by z
0, the �lter structure corresponding to the

original transfer function F (zM ) can be derived by simply

replacing all the z0 in �(z0) by z
M . This leads to the �lter

structure �(zM), which contains at least M delays in every

feedback loop. These M delays can be redistributed to ap-

propriate positions using the retiming procedure to achieve

pipelining by M levels.

The design of a transfer function which is a function of

z
M is given in [2], which is based on the constrained �lter

design method and the polyphase decomposition technique.

The pipelining algorithm is summarized as follows.

Step 1. For given �lter speci�cation and pipelining level

M, design the �lter using any constrained �lter design

method, which constrains the denominator to be a poly-

nomial in z
M . Therefore, the transfer function can be rep-

resented as

F (z) =
P (z)

Q(zM )
(1)

Step 2. Use the polyphase decomposition technique to



Z
-1

Z
-1

-sin Φ-sin Φ

-sin Φ-sin Φ
Φsin Φsin

z( )P

Z
-1

Z
-1

Φsin Φsin
02

ΦcosΦcos

Φsin Φsin

ΦcosΦcos

ΦcosΦcos

-sin Φ-sin Φ
z( )

z( )

Φsin Φsin

ΦcosΦcos
02

-sin Φ-sin Φ
02

-sin Φ

ΦcosΦcos

ΦcosΦcos

ΦcosΦcos

ΦcosΦcos

ΦcosΦcos ΦcosΦcos
ΦcosΦcos

ΦcosΦcos

Φsin Φsin

02

01

01

01

01

Q

Q#ΦcosΦcos

ΦcosΦcos

ΦcosΦcos

ΦcosΦcos

-sin Φ-sin ΦΦsin Φsin

11

1111

11

12

12

12
Φsin Φsin -sin Φ-sin Φ

23

23

23

23
24

24

2424

22

22

22

22

21

21

21

12ΦΦ

ΦΦ

sin

-sin
21

-1 -1

Figure 4. A fourth{order Cordic IIR digital �lter

decompose the the transfer function as

F (z) = z
�i

M�1X

i=0

F
(i)
(z
M
); (2)

where

F
(i)
(z
M
) =

P
(i)(zM)

Q(zM)
; (3)

P
(i)
(z
M
) =

kX

j=0

ai+jM z
�jM

; (4)

and k is an integer which satis�es the following condition

N �M < i + kM � N: (5)

Step 3. For each i, derive F (i)(z0) from F
(i)(zM ) by re-

placing z
M by z

0. Synthesize F (i)(z0) using the algorithm

in section 2. Replacing all the z
0 back by z

M in the re-

sulting �lter structure gives us the M{level pipelined �lter

architecture of F (i)(zM ).

Step 4. Add the output of each sub�lter F (i)(zM ) with

appropriate delay element according to (2), and the de-

sired M level pipelined cordic IIR digital �lter structure

with transfer function F (z) is obtained.

The pipelining scheme diagram of cordic based IIR digi-

tal �lters is given in Fig. 5.

Example 2.

Consider the low pass �lter F (z) with maximum pass-

band ripple of 1 dB, cuto� frequency 0:3�, and mini-

mum stopband attenuation of �20 dB, A pipelinable trans-

fer function with pipelining level 3 is synthesized using

Martinez{Parks Decimation method [2] with M = 3. The

frequency response is shown in Fig. 6. The obtained trans-

fer function is

Q(z3) = [1:000 0 0 2:267 0 0 1:821 0 0 0:580 0 0

0:070]

P (z) = [0:102 0:177 0:257 0:517 0:620 0:698 0:830

0:698 0:620 0:517 0:257 0:177 0:102]:

The transfer function F (z) with degree N = 12 is decom-

posed by polyphase decomposition technique. SinceM = 3,

we have three sets of decomposed transfer functions:

z’ zM

zM z’=

Γ (z)

F(z) = z-i F
(i)

(zM)Σ
i=0

M-1
F

(i)
(zM) Q(zM)

Q(zM)

(i)
(zΓ M

Filter Specifications

Constrained Filter Design

Polyphase Decomposition

Cordic Synthesis

=

Connect Outputs

F
(i)

(z )’ ,

(i)
(z )’ ,Γ i = 0, M-1

i = 0, M-1

i = 0, M-1),

,= P
(i)

(zM)/

F(z)=P(z)/

Figure 5. Pipelining scheme of cordic based IIR
digital �lters

Q(z3) = [1:000 0 0 2:267 0 0 1:821 0 0 0:580

0 0 0:070]

P
(0)(z3) = [0:102 0 0 0:517 0 0 0:830 0 0 0:517

0 0 0:102]

P
(1)(z3) = [0:177 0 0 0:620 0 0 0:698 0 0 0:257]

P
(2)(z3) = [0:257 0 0 0:698 0 0 0:620 0 0 0:177]:

After the z0 = z
3 transformation, we have the new trans-

fer functions

Q(z0) = [1:000 2:267 1:821 0:580 0:070]

P
(0)(z0) = [0:102 0:517 0:830 0:517 0:102]

P
(1)(z0) = [0:177 0:620 0:698 0:257]

P
(2)(z0) = [0:257 0:698 0:620 0:177]:

The �{parameters are computed as

F
(0)(z3) : � = f(1:195; 3:122); (0:124; 1:943);

(0:536; 0:073; 0:531;�0:153)g

F
(1)(z3) : � = f(0:910; 3:060); (0:008; 1:571);

(0:428;�0:015; 0:620;�0:201)g

F
(2)(z3) : � = f(0:082; 2:232); (0:008; 1:571);

(0:620;�0:010; 0:428;�0:198)g:

Notice example 1 realized the sub�lter F (0)(z0). There-

fore, the �lter structure for F (0)(z3) is essentially the same



z( )P z( )Q

Z
-3

Z
-3

Z
-3

Z
-3

Z
-3

Z
-3

Z
-3

-1 -1

Z
-3

-1

Z
-3

Z
-3

Z
-3

-1

Z
-3

Z

Z

-1

-1

Figure 8. A 3{level pipelined Cordic IIR digital �lter
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as in Fig. 4 except all the z�1 are replaced by z�3, which is a

3{level pipelined structure. Sub�lter F (1)(z3) and F
(2)(z3)

can be similarly synthesized. The �nal output for F (z) is

obtained by adding the output of the three sub�lters. Fig. 7

shows the overall scheme of the 3{level pipelined Cordic IIR

digital �lter. The complete �lter architecture of example

2 is shown in Fig. 8, where the multiplication operations

are omitted for clarity purpose. In every feedback loop of

Fig. 8, there are at least 3 delay elements z�1. These delay

elements can be redistributed to appropriate positions us-

ing the retiming procedure to achieve pipelining by 3 levels.

Each of the three sub�lters is itself a 12th order cordic IIR

digital �lter. Their outputs are connected according to (2)

to obtain the �nal 3{level pipelined 12th order cordic IIR

digital �lter architecture.

4. CONCLUSION

A pipelining method for the cordic based IIR digital �lters

is proposed using the constrained �lter design methods and

the polyphase decomposition technique. Using this method,

the maximum �lter sample rate can be increased to any

desired level.
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