
MINIMIZING THE NUMBER OF OPERATIONS IN DSP COMPUTATIONS

Inki Hong and Miodrag Potkonjak

UCLA Computer Science Department, Los Angeles, CA 90095-1596, USA

ABSTRACT

Reduction of the number of operations optimizes the im-

portant design metrics such as area, cost, throughput,

and power consumption for both custom ASIC and pro-

grammable processor implementations. We propose a novel

technique to minimize the number of operations in DSP

computations. The �rst step of the approach logically par-

titions a computation into strongly connected components.

The second step optimizes each component separately. In

the third step the components are merged to further opti-

mize. Finally, the components are scheduled to minimize

memory consumption. The e�ectiveness of our approach is

demonstrated on real-life examples.

1. INTRODUCTION

Reducing the number of operations needed for a given com-

putation decreases cost, area and power consumption, and

increases the throughput of custom datapath ASIC imple-

mentations. In the case of programmable processor imple-

mentations, the throughput is mostly determined by the

number of operations, and power consumption can be de-

creased through e�ective voltage scaling technique which is

enabled by the extra throughput.

We illustrate the key ideas of our approach for minimizing

the number of operations by considering the computation of

Figure 1. Each node represents a subpart of the computa-

tion. We make the following assumptions only speci�cally

for clarifying the presentation of this simpli�ed example.

7

8

6

9
10

A

C D

E

B

Figure 1. A motivational example

S1[n] = 2 � S1[n� 1] + S2[n� 1] + 4 �X[n� 1]

S2[n] = 3 � S1[n� 1] + 5 � S2[n� 1] +X[n� 1]

Y [n] = 2 � S1[n� 1] + 3 � S2[n� 1]

addition = 5, # multiplication = 6

operations = # addition + # multiplication = 11

Figure 2. A simple example for calculating the num-

ber of operations in a maximally fast procedure [7]

A B

C D

E

D

D D

D

D

D

D

7

9

8 6

10

Figure 3. A motivational example after the isolation

step

We stress here that the assumptions are not necessary for

our approach. We assume that each subpart is linear and

dense, which means that every output and state in a sub-

part are linear combinations of all inputs and states in the

subpart with no 0, 1, or -1 coe�cients. The number inside

a node is the number of delays or states in the subpart.

We assume that when there is an arc from a subpart X to a

subpart Y, every output and state of Y depend on all inputs

and states of X.

The number of operations per input sample is initially

2081 (We illustrate how the number of operations is calcu-

lated in a maximally fast procedure [7] using a simple linear

computation with 2 states and 1 output which is described

in Figure 2). Using the technique of [10] which unfolds

the entire computation, the number can be reduced to 725

with an unfolding factor of 12. Our approach can optimize

each subpart separately, which is enabled from isolating the

subparts using pipeline delays. The Figure 3 shows the re-

sulting computation after the isolation step. Separate op-

timization step results in 522.27 operations. We perform

subparts merging to further optimize. If the subparts C

and D are merged and optimized together, the number of

operations is further reduced to 399.4. The approach has

reduced the number of operations by a factor of 1.82(5.2)

from the previous technique of [10] (from the initial number

of operations).

The main technical innovation of the research presented

in this paper is the �rst approach for the minimization of

the number of operations in general computations. The

approach does not treat just signi�cantly wide set of com-

putations than the other previously published techniques

[10], but also outperforms or performs at least as well as

other techniques on all examples.

The rest of the paper is organized in the following way.

In Section 2. we briey review the related work on the min-

imization of the number of operations. Section 3. presents

the key idea of the new approach and describes optimization

techniques for the approach. Section 4. illustrates the e�ec-

tiveness of the technique using real-life examples. Finally,

Section 5. draws conclusions.

2. RELATED WORK

In this section, we briey review the related work on the

minimization of the number of operations. Potkonjak and

Rabaey [7] addressed the minimization of the number of

multiplications and additions in linear computations in

their maximally fast form so that the throughput is pre-

served. Potkonjak et al. [8] presented a set of techniques for

minimization of the number of shifts and additions in linear

computations. Sheliga and Sha [9] presented an approach

for minimization of the number of multiplications and addi-

tions in linear computations. Srivastava and Potkonjak [10]

developed an approach for the minimization of the number

of operations in linear computations using unfolding and the

application of the maximally fast procedure. Guerra et al.

[2] developed a divide and conquer approach for minimizing

critical paths.

3. OPTIMIZATION APPROACH

The core of the approach is presented in the pseudo-code of

Figure 4. The rest of this section explains the global ow

of the approach in more detail.

The �rst step of the approach is to identify the compu-

tation's strongly connected components(SCCs), using the

standard depth-�rst search-based algorithm [11]. For any

pair of operations A and B within a SCC, there exist both

a path from A to B and one from B to A. The SCCs are

isolated from each other using pipeline delays, which en-

ables us to optimize each subpart separately. The inserted

Decompose a computation into strongly connected

components(SCCs);

Use pipelining to isolate the SCCs;

Minimize the number of delays using retiming;

For each of SCCs

If (the SCC is linear)

Apply unfolding;

Else

Isolate nonlinear operations;

Decompose the linear subpart into SCCs;

Apply unfolding to decomposed linear SCCs;

Merge linear SCCs to further optimize;

Schedule subparts to minimize memory usage;

Figure 4. The core of the approach

iopt = b

q
(2R�1)R

PQ
� 1c; ord

q
(2R�1)R

PQ
� 1e, which

gives smaller value of iopt(PQ� R(2R�1)

iopt+1
).

N(�; i) = # multiplications for i times unfolded

system = R
2 + (i+ 1)PR+ (i+ 1)QR+ (i+1)(i+2)

2
PQ

N(+; i) = # additions for i times unfolded system =

R
2 + (i+ 1)PR+ (i+ 1)QR+ (i+1)(i+2)

2
PQ�

R� (i+ 1)Q

Figure 5. Closed-form formula of unfolding for

dense linear computation with P input, Q output,

and R states.

pipeline delays are treated as a subpart input or output. As

a result, every output and state in a subpart depend only

on the subpart's inputs and states. Note that this isolation

is not a�ected by unfolding.

In the next step, the number of delays in the compu-

tation is minimized using retiming by the Leiserson-Saxe

algorithm [6]. It is obvious that smaller number of delays

will require smaller number of operations since both the

next states and outputs depend on the previous states.

The SCCs are further classi�ed as either linear or non-

linear. Linear computations can be represented using

the following state-space equations: S[n] = AS[n � 1] +

BX[n]; Y [n] = CS[n�1]+DX[n], where X, Y, and S are the

input, output, and state vectors respectively and A;B;C;

and D are constant coe�cient matrices. We have used an

approach of [10] for optimization of linear SCCs, which uses

unfolding and the maximally fast procedure [7]. We note

that instead of maximally fast procedure the ratio analysis

by [9] can be used. [10] has provided the closed-form for-

mula for the optimal unfolding factor with the assumption

of dense linear computations which are provided in Figure

5. For sparse linear computations, they have proposed a

heuristic which continues to unfold further until there is no

improvement.

When a SCC is classi�ed as nonlinear, all nonlinear op-

erations are isolated from the SCC so that the remaining

linear subparts can be optimized. All arcs from nonlinear

operations to the linear subparts are considered as inputs to

the linear subparts, and all arcs from linear subparts to the

nonlinear operations considered as outputs from the linear

subparts. The linear subparts are logically partitioned into

SCCs and each SCC is optimized by the same approach in

the previous paragraph.

5 5

A B

Figure 6. A motivational example for SCC merging

S[n+ i] = A
i+1

S[n� 1] +A
i
BX[n]+

A
i�1

BX[n + 1] + :::+BX[n+ i]

Y [n] = CS[n � 1] +DX[n]

Y [n + 1] = CAS[n� 1] + CBX[n] +DX[n+ 1]

:::

Y [n + i] = CA
i
S[n� 1] + CA

i�1
BX[n]+

CA
i�2

BX[n + 1] + :::+ CBX[n+ i� 1] +DX[n+ i]

Figure 7. i times unfolded state-space equations

Sometimes it is bene�cial to decompose a computation

into larger subparts than SCCs. We consider an example

given in Figure 6. We use the same assumptions made for

the motivational example in Section 1.. Separately optimiz-

ing SCCs A and B costs 211 operations while optimizing the

entire computation produces 63.67 operations. The reason

why separate optimization does not perform well in this ex-

ample is because there are too many intermediate outputs

from SCC A to SCC B. The observation leads us to develop

an approach of merging SCCs for further reduction of the

number of operations.

Initially, we only consider merging of SCCs. When two

SCCs are merged, however, the merged SCCs does not

form a SCC. Thus, in general, we must consider merg-

ing of any adjacent arbitrary subparts. Suppose we con-

sider merging of subparts i and j. The gain GAIN(i; j)

of merging subparts i and j can be computed as follows;

GAIN(i; j) = COST (i) + COST (j) � COST (i; j), where

COST (i) is the number of operations for subpart i and

COST (i; j) is the number of operations for the merged sub-

part of i and j. To compute the gain, COST (i; j) must be

computed, which requires to get constant coe�cient matri-

iopt = b

sP
n

j=1
Sj(2SSj�1)P

m

j=1
OjIOj

� 1c; or

d

sP
n

j=1
Sj(2SSj�1)P

m

j=1
OjIOj

� 1e, which gives smaller value of

iopt(
Pm

j=1
OjIOj �

P
n

j=1
Sj(2SSj�1)

iopt+1
):

N(�; i) =
Pn

j=1
(SjSSj + (i+ 1)SjISj)+Pm

j=1
((i+ 1)OjSOj +

(i+1)(i+2)

2
OjIOj)

N(+; i) =
Pn

j=1
(Sj(SSj � 1) + (i+ 1)SjISj)+Pm

j=1
((i+ 1)Oj(SOj � 1) + (i+1)(i+2)

2
OjIOj)

, where m = # output groups, n = # state groups

Sj = # states in state group j

Oj = # outputs in output group j

IOj = # inputs that output group j depends on

ISj = # inputs that state group j depends on

SOj = # states that output group j depends on

SSj = # states that state group j depends on

Figure 8. Closed-form formula for unfolding; If two

outputs depend on the same set of inputs and states,

they are in the same group, and the same is true

for states.

ces A;B;C; and D for only the merged subpart of i and

j. It is easy to construct the matrices using the depth-�rst

search [11]. The i times unfolded system can be represented

by the state-space equations in Figure 7. From the equa-

tions, the total number of operations can be computed for i

times unfolded subpart. Let N(�; i) and N(+; i) denote the

number of multiplications and the number of additions for

i times unfolded system respectively. The resulting number

of operations N(�;i)+N(+;i)

i+1
because i times unfolded system

uses a batch of i + 1 input samples to generate a batch of

i + 1 output samples. We continue to unfold further until

no improvement is achieved. If there are no coe�cients of 1

or �1 in the matrices A, B, C, and D, then closed-form for-

mula of the optimal unfolding factor iopt and of the number

of operations for i times unfolded system can be obtained

[3]. The formula are provided in Figure 8.

While (there is improvement)

For all possible merging candidates,

Compute the gain;

Merge the pair with the highest gain;

Figure 9. A pseudo-code of a greedy heuristic

Now, we can evaluate possible merging candidates. We

propose two heuristic algorithms for SCC merging. The

�rst heuristic is based on greedy optimization approach.

Design Init Ops [10] New Method Imp.

DAC 2098 2098 1327.83 1.58

modem 213 213 148.83 1.43

GE controller 180 180 105.26 1.71

APCM receiver 2238 N/A 1444.19 1.55

Audio Filter 228 N/A 92.0 2.48

Video Filter 398 N/A 184.5 2.16

Table 1. Experimental results for real-life examples

The pseudo-code is provided in Figure 9. The algorithm

is simple. Until there is no improvement, merge the pair

of subparts which produces the highest gain. The other

heuristic algorithm is based on a general combinatorial op-

timization technique known as simulated annealing [4].

Since the subparts of a computation are unfolded sep-

arately by di�erent unfolding factors, we need to address

the problem of scheduling of the subparts. They should

be scheduled so that memory requirements for code and

data of a schedule are minimized. We observe that the

unfolded subparts can be represented by multi-rate syn-

chronous dataow graph [5] and the works of [1] can be

directly used.

4. EXPERIMENTAL RESULTS

This section presents the experimental results of our tech-

nique for real-life examples, where Table 1 summarizes the

results. Our set of benchmark designs include the following

typical portable DSP, video, communication, and control

applications: DAC - 4 stage NEC digital to analog converter

(DAC) for audio signals; modem - 2 stage NEC modem; GE

controller - 5-state GE linear controller; APCM receiver -

Motorola's adaptive pulse code modulation receiver; Audio

Filter - analog to digital converter (ADC) followed by 18

order parallel �lter; and Video Filter - two ADCs followed

by 12-order two dimensional (2D) IIR �lter. DAC, modem,

and GE controller are linear computations and the rest are

nonlinear computations. The �fth column of Table 1 pro-

vides only the improvement factor of our method from the

initial number of operations since [10] is either ine�ective

or inapplicable for all examples. Our method has reduced

the number of operations by an average factor of 1.82 (av-

erage 42.9 %) for the examples, which clearly indicates the

e�ectiveness of our new method.

5. CONCLUSION

We proposed a novel technique to minimize the number

of operations in DSP computations. The e�ectiveness of

our approach was demonstrated on real-life examples. Our

method has reduced the number of operations by an aver-

age factor of 1.82 (average 42.9 %) for the examples that

previous techniques are either ine�ective or inapplicable.

REFERENCES

[1] S. S. Bhattacharyya et al,\A scheduling frame-

work for minimizing memory requirements of

multirate signal processing algorithms expressed

as dataow graphs,", VLSI Signal Processing VI,

pp. 188-196, 1993.

[2] L. Guerra, M. Potkonjak, J. Rabaey, "Divide-

and-Conquer Techniques for Global Throughput

Optimization", VLSI Signal Processing Work-

shop, pp. 137-146, San Francisco, CA, October

1996.

[3] I. Hong, M. Potkonjak,\Minimizing the Num-

ber of Operations in DSP Computations", UCLA

CSD Tech. Rep. (to appear).

[4] S. Kirkpatrick, C. Gelatt, M. Vecchi, \Optimiza-

tion by Simulated Annealing," Science, Vol. 220,

No. 4598, pp. 671-680, 1983.

[5] E. A. Lee and D. G. Messerschmitt, \Synchronous

dataow" , Proceedings of the IEEE, Vol. 75, No.

9, pp. 1235-1245, 1987.

[6] C. E. Leiserson, J. B. Saxe, \Retiming syn-

chronous circuitry," Algorithmica, Vol. 6, No. 1,

pp. 5-35, 1991.

[7] M. Potkonjak, J. Rabaey, \Maximally Fast and

Arbitrarily Fast Implementation of Linear Com-

putations," IEEE International Conference on

Computer-Aided Design, pp. 304-308, 1992.

[8] M. Potkonjak et al, \Multiple constant multi-

plications: e�cient and versatile framework and

algorithms for exploring common subexpression

elimination", IEEE Trans. on CAD, Vol. 15, No.

2, pp. 151-165, 1996.

[9] M. Sheliga, E.H.-M. Sha, \Global node reduction

of linear systems using ratio analysis", Interna-

tional Symposium on High-Level Synthesis, pp.

140-145, 1994.

[10] M. Srivastava, M. Potkonjak, \Power optimiza-

tion in programmable processors and ASIC im-

plementations of linear systems: transformation-

based approach," Design Automation Conference,

pp. 343-348, 1996.

[11] R. E. Tarjan, \Depth �rst search and linear graph

algorithms," SIAM Journal on Computing, Vol. 1,

No. 2, pp. 146-160, 1972.

