
BEEHIVE: AN ADAPTIVE, DISTRIBUTED, EMBEDDED SIGNAL PROCESSING

ENVIRONMENT

Shahram Famorzadeh Vijay Madisetti Thomas Egolf Tuongvu Nguyen

Center for Signal and Image Processing (CSIP), Georgia Tech-ECE, Atlanta, GA USA 30332-0250

ABSTRACT

We propose an open signal processing system design and

implementation environment, BEEHIVE, that allows ap-

plication developers to rapidly compose and debug func-

tional speci�cations in a networked, distributed comput-

ing environment, and then later migrate the application

(transparently) onto an embedded, distributed, computing

hardware/software platform, with the capability to recon-

�gure (adaptively) the resources assigned to the applica-

tion to meet the dynamic real-time requirements of the im-

plementation. Recent developments in the area of virtual

machines; broker-based, distributed, transportable comput-

ing; object-oriented programming methodologies, Java and

its real-time extensions; recon�gurable and programmable

hardware; approximate algorithms; adaptive-load and re-

source-management algorithms, are harnessed in this oper-

ating environment 1.

1. INTRODUCTION

Performance requirements of signal processing applications,

(e.g., ATR in real-time (RT) and non-RT) of near-term

interest to the HPC community range between 2-50 Gi-

ga
ops (GFLOPS) with data bandwidth requirements be-

tween 80-1000 Mbytes/second. Due to their impressive

computing and communication requirements, even evalu-

ating and studying the performance of various algorithms

on a non-realtime testbed is di�cult. Implementing a cho-

sen algorithm for �eld use is considerably more di�cult,

given the amount of customized control, diagnostic, and

test software required to port the algorithms onto a hetero-

geneous, recon�gurable, form-constrained commercial o�-

the-shelf (COTS) hardware and software platform. Long

prototyping times and excessive costs plague all aspects of

the problem: algorithm design, development, and porting

algorithm onto a real-time platform for �eld use.

The long-term goals for the BEEHIVE project are sum-

marized in �gure 1. Proceeding in a clockwise manner,

we start with the current practice in algorithm develop-

ment platforms (workstation with machine speci�c, com-

piled DSP library-based application support). Examples

1This research was supported by the Advanced Sensors Con-

sortium sponsored by the U.S. Army Research Laboratory un-

der Cooperative Agreement DAAL01-96-2-0001, 1996-2001 and

in part by DARPA's RASSP program (1994-97). Views pre-

sented in this paper are authors' alone.

of these include Matlab, Mathematica, and Ptolemy. The

need for parallel processing, as computing requirements in-

crease, is depicted in the next �gure, where the development

platform includes two or more networked workstations with

task partitioning and parallel processing features. Repre-

sentative examples include the Sequent (in the commercial

arena), Parallel Virtual Machine (PVM) (from ORNL) and

its Java-based incarnations, and Network of Workstations

(NOW) (from UC Berkeley). Industry trends in standards

have supported this progression. BEEHIVE represents a

big improvement in this family of architectures, provid-

ing both the required bandwidth and the real-time perfor-

mance. BEEHIVE provides a distributed environment that

adaptively assigns resources (computing and communica-

tion) to the application within a portable, library-based,

DSP environment. Real-time embedded COTS boards and

recon�gurable hardware platforms (e.g., FPGAs) are seam-

lessly included within the universal application design and

implementation environment, through the speci�cation of

a BEEHIVE-compliant protocol for embedded boards. In

the example of �gure 1, transparent to the user (who still

thinks that the application is running on the Sun Sparc), the

FFT was computed on a BEEHIVE-compliant FPGA-based

board, while the DCT was computed on a COTS DSP-based

board, through use of Sun's Java-based technology called

object serialization, and a broker-based, distributed com-

puting paradigm [1-4]. The software developed by the user

as part of the algorithm evaluation and design phase can

be ported, unchanged, onto the �elded system, also trans-

parently to the user. BEEHIVE, in this way, represents

a high risk, high-payo� technology of critical importance

to the goals of the embedded, real-time, high performance

computing community.

2. DESIGN VS. IMPLEMENTATION

BEEHIVE proposes a cross-development philosophy as de-

picted in �gure 2, where the application is developed ini-

tially on one system and ported to another run-time sys-

tem, with minimal change. The library-based Java applica-

tion design and development testbed is shown in �gure 2(a).

The application layer sits on the top of the Java virtual ma-

chine and can be ported across the network of workstations.

In the implementation environment, there is an additional

real-time virtual machine layer that consists of extensions

to Java to support deterministic real-time scheduling and

resource management (rate monotonic analysis, real-time

FFT

RESULT

HP 715/50

HP 715/50

SUN

SUN SPARC

FFT FFT.EXE

FFT.DAT

DCT

FIR

Stubs

FFT

RESULT

FFT FFT.EXE

FFT.DAT

DCT

FIR

Stubs

HP

SUN SPARC

FFT

DCT

FIR

Stubs

RESULT

Reconfigurable
Hardware

FFT.EXE

FFT.DAT

System Area Network (SCI, Myrinet etc)

Mask

Network

Network

SPARCSUN

CHAMPS

CSPI Board

DCT.EXE

FFT +
DCT

Broker

FFT + DCT Result

FFT Result

BEEHIVE

INITIAL ORB/CORBA

Figure 1. Evolution of the BEEHIVE Project.

OPERATING SYSTEM

WORKSTATION

NETWORKED

APPLICATION APPLICATION

VIRTUAL MACHINE (VM)VIRTUAL MACHINE (VM)

RT OS

RT EXTENSIONS - VM

EMBEDDED HW/SW

Platform-independent layers

(b)(a)

Figure 2. BEEHIVE's cross-development platform.
Note: BEEHIVE v0.1 currently supports the model of
�gure 2(a). Later versions plan to phase in support for
�gure 2(b).

guarantees) that sits on the top of the real-time OS (RTOS)

layer as shown in �gure 2(b). A candidate commercial real-

time virtual machine layer is PERC from NewMonics, Inc

[2]. We will discuss the algorithm development environment

next, followed by a description of the run-time implementa-

tion environment. Currently, BEEHIVE v0.1 supports the

environment of �gure 2(a).

In the next version of BEEHIVE, we plan to include

real-time DSP boards into the environment through the in-

troduction of a BEEHIVE-compliance \sign-o�" procedure,

where a processor on each DSP board ensures that autocod-

ing (since bytecode may not run on the DSP board) is used

to execute a function locally on each board, transparently

to the user.

3. BEEHIVE V0.1

We will now discuss the current version of BEEHIVE as

implemented at Georgia Tech. Java is a programming

language of choice because it is architecture-neutral and

portable; simpler and more e�cient that C++ (with ad-

dition of multithread support, and support for real-time);

provides support for run-time linking of objects (avoiding

extensive recompilation) facilitating plug-and-play; and en-

joys extensive support by the networking industry. Real-

time extensions to Java are also currently being developed.

BEEHIVE (implemented primarily in Java) comprises of

users, resources, services, and brokers as listed below.

Resource Objects: including (a) computational resources

(workstations, HPC machines, PCs, special purpose hard-

ware (FPGAs), PDAs, etc.,), (b) data source resources (key-

boards, PDAs, cameras, sensors, reuse libraries), (c) data

sink resources (displays, data stores, reuse libraries).

Service objects: (a) Java application subroutine libraries,

(b) data handling/fusion routines, (c) FPGA/Embedded

equivalents of library, (d) control monitors, (3) real-time

OS, etc.

Broker objects: Objects which (a) handle requests, (b)

maintain list of services, (c) schedule services on resources,

(d) ensure stability, latency constraints, e�ciency of dis-

tributed platform, and correctness, etc.

User COE Interfaces: (a) That request services from

brokers through Java stubs or dynamic invocations via

a common operating environment (COE) interface, (b)

that download applications that run locally on the

Java compliant-embedded system, or on remote resources

through control procedures contained within the broker to

enable rapid, portable, distributed computing.

The operation of BEEHIVE v0.1 can be described as fol-

lows. When user U1 logs in via the COE, BEEHIVE starts

a new thread, a PersonalityBroker, that obtains user iden-
ti�cation, priority, and current application needs. The Per-
sonalityBroker contacts a DomainInformationServer to ob-
tain information on what domains are currently supported

within the environment (�gure 3). As shown in �gure 4, do-

mains could be Rice University, Georgia Tech, Sanders, or

Berkeley, who each have their own DomainResourceBrokers.
The DomainResourceBroker lists the services and resources

within its domain (including FFTs, DCTs,

-

FPGA boards, Mercury boards, and others). The Per-
sonalityBroker then selects those services (e.g., primitives,

software libraries) that user U1 could �nd valuable, and

composes a menu (only function stubs, without executables

or bytecodes) that it presents to the user. U1 then selects

various services to compose an application speci�ced to-

gether with form-function-�t constraints. As shown in �g-

ure 4, this application could consist of a 2D-FIR, followed

by an FFT operation.

After the application is composed and launched by

U1, BEEHIVE assigns an ApplicationBroker for its im-

plementation. The ApplicationBroker then maps and

assigns domains where these services (FFT, FIR) can

be executed (based on the initial replies from the

DomainResourceBrokers when U1 logged in) and uses

object serialization to migrate the tasks to the assigned

DomainResourceBrokers. For instance, the FFT was

sent to the Georgia Tech DomainResourceBroker, while

the FIR was sent to the Sanders DomainResourceBro-
ker. Each DomainResourceBroker then invokes a lo-

cal ResourceBroker that handles the assignment of FFT

to a speci�c local resource. Each resource is provided

with a TaskManager that supports object serialization

and is responsible for handling the interface with the

ResourceBroker.

In a real-time embedded implementation, for instance,

if the FFT sent to the DomainResourceBroker were to

be mapped to a FPGA board, then the TaskManager for

the FPGA board will accept the FFT.DATA, con�gure the

FPGA board to compute the FFT and then send the result

back to the ApplicationBroker. In BEEHIVE v0.1 all re-

sources are networked so the task is simply migrated onto

to the target processor (say, a Sparc at Georgia Tech). All

these activities are transparent to the user U1, who for all

purposes thinks that the entire application and the resource

library are resident on his local machine.

Any stable dynamic load balancing algorithm can

be implemented within BEEHIVE. For instance, the

ApplicationBroker and the ResourceBrokers could collect

load information dynamically and migrate tasks to other re-

sources if quality of service guarantees were not being met

by the current resource.

Real-time extensions to Java, namely PERC [2], will be

phased into the next version of BEEHIVE to target em-

bedded applications where precise load and memory usage

guarantees are required to meet real-time performance con-

straints.

4. CURRENT AND FUTURE WORK

Current work is being done on the following four fronts:

1. Library of Primitive Functions: A library of DSP func-

tions (FFT, DCTs..) in Java is being created for use

within a variety of domains. A number of approxi-

mate algorithms, in addition to programmable masks

for FPGA boards will be included within the primitive

COE.

2. BEEHIVE Infrastructure: We are working extensively

on the development of the COE, and on the implemen-

tation of the various application and resource brokers.

Other Application
Brokers

USER

Library

User Primitive

APPLICATION

Application Broker

Resources
(DSPs, FPGAs, Workstations, Sensors)

Personality Broker

Resource Broker

Domain Broker Info Server

Other Resource Managers

Resource Manager

Resource Monitors

Figure 3. Architecture of Brokered Computation Model

E�ciency, scalability, and quality of service issues are

the primary metrics in the various tradeo�s that we are

considering.

3. Real-time Extensions: A number of enhancements are

required before BEEHIVE can be utilized as a cross-

development platform as desired. The role of TaskMan-
agers for resources in ensuring compliance with object

serialization protocols within Java remain to be �nal-

ized. These additions will ensure that recon�gurable

hardware, and other embedded processing resources

(e.g., cameras, COTS boards, printers, display devices,

and sensors) can be included within the prototyping en-

vironment. A speci�c BEEHIVE-compliance protocol

is being formulated for ensuring that DSP boards can

be seamlessly incorporated into the environment.

4. Adaptive Resource Management: In real-time appli-

cations, task deadlines must be met with guarantees.

Java currently does not provide determinstic guaran-

tees on bounds on memory usage, and on task execu-

tion times. Recent extensions to Java, such as PERC,

provide these features, and we will investigate these ex-

tensions with distributed, adaptive, and dynamic load

balancing algorithms that are scalable and robust [3].

5. SUMMARY

The DARPA and ARL-sponsored BEEHIVE project at

Georgia Tech is one of the �rst e�orts towards a distributed,

adaptive, embedded, signal processing environment for both

algorithm design and evaluation, and for its eventual imple-

mentation. A number of promising state-of-art technologies

have been included in its implementation and an initial re-

lease. BEEHIVE v0.1 is currently available for demonstra-

tion purposes. While BEEHIVE v0.1 only supports a net-

worked workstation based environment, research new exten-

sions to real-time embedded platforms with programmable

hardware is under way.

6. REFERENCES

1. The Java Language Overview, Sun Microsystems, Inc.

1995.

Dependent
Language

Generator

of Object of Object

Stub File

C++

Stub File

Language X

Stub File

GT SubmitsRice Submits

Compile
Link &
Run

of 2-D FFT in C++

Implementation

Object

DSP Library at Rice Univ.

Implementation

Object

DSP Library at Georgia Tech

Registered
Libraries
of GT and Rice

Registered
Resources

of GT and Rice

Compile
Link &
Run

GT Resource

Invoke
FIR Method

Invoke
FFT Method

with Stub Info.

Tool

CORBA

for C++
Support
Runtime

Compliant

for Java
Support
Runtime

Compliant
CORBA

Kernel

Runtime

Compliant

CORBA

Java

of 2-D FIR in Java

Send Graph to Broker

Post to COE Available Libraries of Stubs

Flow Graph
with Subgraphs

2-D
FFT

2-D
FIR

User

BEEHIVE 96

of Service Object Stubs (Headers)
Application-Specific Library

Broker Resource
- Receive Graph
- Find objects

- Return results to client

- Pass objects data
- Invoke objects method

Sanders Resource

BEEHIVE description BEEHIVE description

BEEHIVE
stub method

Figure 4. BEEHIVE Environment v0.1. Next ver-
sion plans to include seamless support for BEE-
HIVE-compliant DSP cards and FPGA boards.

2. K. Nilsen, \Embedded Realtime Development in Java",

NewMonics, Inc. Java Developer's Journal, 1996.
3. V. Madisetti, VLSI Digital Signal Processors, IEEE

Press, Piscataway, NJ, 1995.

4. V. Madisetti (PI), BEEHIVE: An Environment for
DASP, Georgia Tech Research Corporation, A DARPA

BAA 96-16 Proposal, Vol. 1-2, June 5, 1996.

Authors may be contacted at vkm@ee.gatech.edu
(http://www.ee.gatech.edu/users/215/).

