

ABSTRACT

In this paper we discuss the choice of objective function in list
scheduling algorithms for scheduling data flow graphs onto mul-
tiprocessor architectures. A majority of the list scheduling algo-
rithms used in practice utilize a global strategy wherein actor
static levels are used for making scheduling decisions. When fine-
grain DSP applications such as FIR or elliptical filters need to be
scheduled on architectures that consist of commodity part pro-
cessors and a general interconnection network whose interpro-
cessor communication cost cannot be ignored, a traditional list
scheduling algorithm is in many cases not the best choice. In an
experimental study we compare these global strategies to local
strategies that utilize load balancing. The study reveals that glo-
bal strategies suffer from flaws that could cause local strategies
to yield more than 10% shorter schedule lengths on the average.
In particular we find that a novel Earliest Finish Time (EFT)
strategy exhibits very good performance.

1. INTRODUCTION

For many digital signal processing (DSP) applications, very short
data sample periods are required. Many scheduling methods (

e.g.

[1][2]) only allow different instances of the application graph to
be executed in a non-overlapping fashion, thus forcing the sam-
ple period to be dictated by the

makespan

, or schedule length, for
the graph. If the sample period is required to be shorter than the
makespan, overlapping scheduling techniques (

e.g.

 [3][4]) can be
used for exploiting pipelining parallelism in the application.

In many modern DSP design systems,

e.g.

 Ptolemy [5],

list
scheduling

 is the main technique for scheduling DSP applica-
tions on multiprocessor architectures. List scheduling is a non-
overlapping scheduling technique wherein each schedulable
actor in the application is assigned a priority and placed in a list
ordered by the actor priorities. Actor priorities are calculated
using an

objective function

 that takes as input an actor/processor
pair and leaves as output an objective value that will be used as
actor priority. At each scheduling step the schedulable actor with
the highest priority is assigned to an idle processor. Traditional
list scheduling algorithms (

e.g.

 [6]) use as an actor’s priority a

static level

 that represents the maximum “length” in execution
time from the actor to the output actors. Modern list scheduling
algorithms (

e.g.

 [1][7]) use dynamic priorities that change for
each new scheduling step to take into account architecture
parameters such as communication cost. Hu [6] showed that the
strategy with static levels yields a minimal makespan for systems

with tree-structured application graphs, unity actor execution
time and negligible communication cost. For more realistic
assumptions about the application and the architecture, minimiz-
ing the makespan is an NP-complete problem [8] and it is thus
very likely that optimal solutions can only be guaranteed using
computationally intractable exhaustive search techniques. For
this reason, many greedy heuristic strategies have been proposed
in the list scheduling class [1][7][9].

A list scheduling algorithm can be classified as

processor-
driven

 or

graph-driven

 [10]. In the processor-driven approach the
set of schedulable actors is updated only when no more schedu-
lable actors are available or an actor cannot be scheduled because
all processors are busy. In this situation, one or more processors
are forced to complete their execution and become idle, thereby
generating new schedulable actors or idle processors. The pro-
cessor-driven approach provides a means for load balancing
between processors using a global time to track the increasing
sequence of processor completion times [11]. Unfortunately, the
processor-driven approach is not capable of overlapping actor
execution time with interprocessor communication delays in a
multiprocessor architecture with non-negligible interprocessor
communication cost. In contrast, the graph-driven approach
updates the set of schedulable actors following the scheduling of
each actor and the completion times of all processors are imme-
diately recalculated. The graph-driven approach is able to overlap
actor execution with communication delays and can thereby pro-
duce shorter makespans.

In this paper we will investigate how different objective func-
tions affect the scheduled makespan. Objective functions with
global strategies (static/dynamic levels) are compared to objec-
tive functions with local strategies (earliest start/finish times).

2. EXECUTION MODEL

We assume a homogeneous Synchronous Data Flow (SDF) [12]
execution model. In data flow, a program is represented as a
directed graph in which the nodes represent data flow actors and
the arcs represent data dependencies between actors. Data are
represented as tokens flowing along the arcs. An actor is executed
when all necessary data are available on its input arcs. The graphs
used in SDF is a special class of data flow graphs wherein the
actors lack data dependency in their execution patterns. We will
restrict our execution model even further by assuming that the
application is described as a homogeneous SDF graph,

i.e.

 a
graph in which each actor always produces and consumes exactly

ON OBJECTIVE FUNCTION SELECTION IN LIST SCHEDULING ALGORITHMS FOR
DIGITAL SIGNAL PROCESSING APPLICATIONS

Jan Jonsson and Jonas Vasell

Department of Computer Engineering,
Chalmers University of Technology, S-412 96 Göteborg, Sweden

Email: {janjo, vasell}@ce.chalmers.se

one token per invocation. This does not impose restrictions on the
applicability of the presented results as a general SDF graph
always can be converted into a homogenous SDF graph [13].

We assume a multiprocessor architecture based on the model
depicted in Figure 1. The architecture consists of a set of homo-
geneous processor cells (PCs) attached to an interconnection net-
work. Processor cells communicate with each other using
messages that carry tokens to and from data flow actors. The
communication cost in the interconnection network is assumed to
be non-negligible, and may depend on the distance between com-
municating processors as well as on other communication taking
place in the network. Each processor cell consists of an

execution
unit

 (EU) and a

communication unit

 (CU). The execution unit
executes data flow actors in a fully-static, non-preemptive fash-
ion,

i.e.

 each actor is invoked at a predetermined time and exe-
cutes to completion without interruption from other actors. The
communication unit handles token message flow in the network
and operates in parallel with the execution unit.

3. EXPERIMENTAL SETUP

We have used an experimental platform based on the execution
model described in the previous section. All modeling and simu-
lation necessary for the experiments was performed within the
FEAST evaluation framework [14].

The processor cells in the architecture were connected via a
shared bus topology. The architecture size was selected in the
range of 2 to 16 processor. The communication cost between two
processor cells was assumed to be one time unit per transmitted
data item. Network contention was not taken into account. The
communication cost between two actors residing on the same
processor cell was assumed to be zero.

A graph-driven list scheduling algorithm was used for the
experiment. For each scheduling step, the list scheduler con-
structed actor/processor pairs from all schedulable actors (those
whose predecessors have been scheduled) and all idle processors
in the architecture. The quality of each actor/processor pair was
then evaluated using an objective function. During the actor/pro-
cessor pair evaluation, communication channels were tentatively
established between an actor and its predecessors to take into
account the overhead introduced by the interconnection network.
After evaluating all actor/processor pairs, the pair that yielded the
best objective value was selected. In case of a draw between two
or more actor/processor pairs, the pair was selected that yielded

the earliest actor start time. Finally, static scheduling information
(

i.e.

 actor start times) for the next scheduling step was generated.
No attempts was made by the list scheduler to exploit “schedule-
holes”,

i.e.

 unused time intervals earlier in the schedule [15].

Four objective functions were used in the experiment: High-
est Static Level (HSL), Highest Dynamic Level (HDL), Earliest
Start Time (EST), and Earliest Finish Time (EFT).

The HSL heuristic is a graph-driven extension of Hu’s work
[6] that allows arbitrary graph structure and non-uniform actor
execution time. The objective of HSL is to select the actor/pro-
cessor pair that yields the highest static level. This strategy exhib-
its graph balancing characteristics in that it gives preference to
actors on an estimated critical path in the data flow graph.

The HDL heuristic is a further refinement of HSL that takes
communication cost into account [1]. The objective of HDL is to
select the actor/processor pair that yields the highest dynamic
level,

i.e.

 the biggest difference between an actor’s static level
and the earliest time at which the actor can be scheduled on the
processor. Similar to the HSL strategy, HDL exhibits graph bal-
ancing characteristics. Because HDL takes communication cost
into account it is able to compensate for inadequate estimations
of the static levels. However, this compensation cannot take place
during the initial scheduling steps when the earliest actor start
times will be too low to have any major impact on the dynamic
level. Therefore, HDL will initially behave like HSL and give
preference to actors on an estimated critical path. For subsequent
scheduling steps, the earliest actor start times will increase and
exceed the actor static levels. At this point, HDL will give prefer-
ence to actor/processor pairs that yields the earliest actor start
time.

The EFT heuristic is a novel heuristic whose objective is to
select the actor/processor pair that yields the earliest actor finish
time. This strategy exhibits processor load balancing characteris-
tics in that it attempts to keep the earliest available processor
times as low as possible.

The EST heuristic is a graph-driven version of the work pre-
sented in [7]. The objective of EST is to select the actor/processor
pair that yields the earliest actor start time. Like the EFT heuris-
tic, EST exhibits processor load balancing characteristics. How-
ever, because EST does not take actor execution time into
account, the load balancing effect will not be as good as for EFT
when actor execution times are non-uniform.

For each choice of objective function, a set of 500 data flow
graphs was generated using a random graph generator. Each
graph contained between 75 and 100 nodes and the execution
time of each node was chosen at random assuming a uniform
probability distribution in the range of 3 to 5 time units. The num-
ber of predecessors to each node was chosen at random to be 1 or
2, and the depth of the graph was chosen at random in the range
of 8 to 10 levels; this to mimic data flow graphs for typical fine-
grain DSP applications where (a) unary and binary actors are
prevalent, (b) the graph is fairly deep, and (c) there is a low dis-
tribution of data flow actor execution time. The number of data
items in each token passed between a pair of actors was chosen
in a way such that the communication cost ratio (CCR) of the
average token communication cost over the average actor execu-
tion time corresponded to 0.5, 1.0, 2.0 or 4.0.

Figure 1. Basic architecture model

Interconnection Network

CU EU

PC

PC PC

4. EXPERIMENTAL EVALUATION

The diagrams in Figure 2 summarize the results attained when
the generated data flow graphs were scheduled using different
combinations of objective function, communication cost ratio,
and architecture size. The diagrams show the average makespan
deviation in percent for each objective function relative to HDL
for each value of CCR and architecture size. In the diagrams, neg-
ative deviation means shorter makespan.

The EST/EFT makespan deviation curves have two extreme
points: one maximum that occurs for a low number of processors
and one minimum that occurs for a medium number of proces-
sors. This curve shape can be explained as follows. HDL concen-
trates on an estimated critical path during the initial scheduling
steps, whereas EST/EFT use a load balancing strategy. For a low
number of processors, static levels will be a good estimate on the
critical path and thus a much better heuristic to use than the load
balancing strategy which lacks global knowledge about the appli-
cation graph. For low CCR, the EST/EFT curve maxima exceed
+10%, but as CCR increases, any communication overhead will
invalidate the estimated static levels used by HDL and the EST/
EFT curve maxima will decrease towards zero. For a medium
number of processors, HDL will give preference to actors on the
estimated critical path and discriminate against other actors when
the number of processors is too limited to allow for full extraction

of graph parallelism. Then the discriminated actors may have to
be executed in sequence and potentially give rise to a new critical
path. EST/EFT exhibit no such behaviour and their relative per-
formances will be improved. Also, more communication chan-
nels will be established for this architecture size and the
estimated static levels used by HDL will be less accurate as CCR
increases. At best, the EST/EFT curve minima are approximately
-10%. For a larger number of processors, however, the HDL dis-
criminating effect disappears and the EST/EFT makespan devia-
tions will again increase towards zero (this was verified through
measurements with the number of processors set as high as 64).

For low CCR, the EST strategy is approximately 5% worse
than EFT. This is because the load balancing strategy used by
EFT is more effective as it considers actor execution time. Fur-
thermore, when CCR is low, HSL is comparable to HDL, but as
CCR increases, the HSL makespan deviation increases because
HSL does not compensate for communication cost.

To investigate the effect of execution time distribution on the
makespan, we have performed two complementary studies. In the
first study, a uniform execution time (4 time units) was used for
all actors in the graph. In the second study, the execution times
were chosen in the range of 1 to 7 time units. Because of space
limitation, we will only describe the results briefly. When uni-
form execution time is assumed, EST and EFT exhibit identical

-15

-10

-5

0

5

10

15

2 4 6 8 10 12 14 16

A
v
e
r
a
g
e

m
a
k
e
s
p
a
n

d
e
v
i
a
t
i
o
n

(
%
)

Number of processors

[communication cost ratio = 0.5]

Highest Static Level
Earliest Start Time
Earliest Finish Time

-15

-10

-5

0

5

10

15

2 4 6 8 10 12 14 16

A
v
e
r
a
g
e

m
a
k
e
s
p
a
n

d
e
v
i
a
t
i
o
n

(
%
)

Number of processors

[communication cost ratio = 1.0]

Highest Static Level
Earliest Start Time
Earliest Finish Time

-15

-10

-5

0

5

10

15

2 4 6 8 10 12 14 16

A
v
e
r
a
g
e

m
a
k
e
s
p
a
n

d
e
v
i
a
t
i
o
n

(
%
)

Number of processors

[communication cost ratio = 2.0]

Highest Static Level
Earliest Start Time
Earliest Finish Time

-15

-10

-5

0

5

10

15

2 4 6 8 10 12 14 16

A
v
e
r
a
g
e

m
a
k
e
s
p
a
n

d
e
v
i
a
t
i
o
n

(
%
)

Number of processors

[communication cost ratio = 4.0]

Highest Static Level
Earliest Start Time
Earliest Finish Time

Figure 2. Average makespan deviation for different objective function heuristics relative to the HDL heuristic.

behaviour. For low CCR, the worst EST/EFT makespan devia-
tions exceed +15%. When CCR increases, the best EST/EFT
makespan deviations are approximately -12%. When the execu-
tion time is distributed between 1 and 7, a behaviour similar to the
one in Figure 2 is observed. However, the best EST/EFT
makespan deviations are only around -5%.

5. CONCLUSIONS

In this paper we investigate the impact of objective function
selection in list scheduler algorithms for digital signal processing
applications. Experimental studies reveal that commonly used
global strategies that give preference to estimated critical paths in
many situations are outperformed by local strategies that employ
load balancing. For example, when the average communication
cost exceeds the average actor execution time, the increase in per-
formance for a local strategy can be more than 10% on the aver-
age.

The general observations from the experiments can be sum-
marized as follows:

(i) When the number of processors is below a critical point, a
global strategy such as HSL or HDL should be used; other-
wise a local strategy such as EST or EFT should be used.

(ii) The critical point decreases towards fewer processors with
increasing communication cost ratio.

(iii) Among the local strategies EST and EFT, the preferred
choice is EFT; especially when the number of processors is
low.

(iv) The relative performance between any pair of objective
functions tends to decrease with increasing distribution of
actor execution time.

ACKNOWLEDGEMENTS

The work presented here was supported by a grant from the Volvo
Research Foundation and the Volvo Educational Foundation.

REFERENCES

[1] G. C. Sih, E. A. Lee. “A Compile-Time Scheduling Heuris-
tic for Interconnection-Constrained Heterogeneous Proces-
sor Architectures.”

IEEE Trans. on Parallel and Distributed
Systems

, Vol. 4, No. 2, February 1993, pp. 175-187.

[2] G. C. Sih, E. A. Lee. “Declustering: A New Multiprocessor
Scheduling Technique.”

IEEE Trans. on Parallel and Dis-
tributed Systems

, Vol. 4, No. 6, June 1993, pp. 625-637.

[3] P. D. Hoang, J. M. Rabaey. “Scheduling of DSP Programs
onto Multiprocessors for Maximum Throughput.”

IEEE
Trans. on Signal Processing

, Vol. 41, No. 6, June 1993, pp.
2225-2235.

[4] J. Jonsson, J. Vasell. “Real-Time Scheduling for Pipelined
Execution of Data Flow Graphs on a Realistic Multiproces-
sor Architecture.” In

Proc. of the IEEE Int. Conf. on Acous-
tics, Speech and Signal Proc.

, Atlanta, Georgia, May 7-10,
1996, pp. 3314-3317.

[5] J. L. Pino, S. Ha, E. A. Lee, J. T. Buck. “Software Synthesis
for DSP Using Ptolemy.”

Journal of VLSI Signal Process-
ing

, Vol. 9, No. 1-2, January 1995, pp. 7-21.

[6] T. C. Hu. “Parallel Sequencing and Assembly Line Prob-
lems.”

Operations Research,

Vol. 6, No. 6, November 1961,
pp. 841-848.

[7] J.-J. Hwang, Y.-C. Chow, F. D. Anger, C.-Y. Lee. “Schedul-
ing Precedence Graphs in Systems with Interprocessor
Communication Times.”

SIAM Journal on Computing,

Vol.
18, No. 2, April 1989, pp. 244-257.

[8] M. R. Garey, D. S. Johnson.

Computers and Intractability:
A Guide to the Theory of NP-Completeness

. Freeman, San
Francisco, 1979.

[9] H. El-Rewini, T. G. Lewis. “Scheduling Parallel Program
Tasks onto Arbitrary Target Machines.”

Journal of Parallel
and Distributed Computing

, Vol. 9, No. 2, June 1990, pp.
138-153.

[10] M. Al-Mouhamed, A. Al-Maasarani. “Performance Evalua-
tion of Scheduling Precedence-Constrained Computations
on Message-Passing Systems.”

IEEE Trans. on Parallel and
Distributed Systems

, Vol. 5, No. 12, December 1994, pp.
1317-1322.

[11] B. Kruatrachue, T. Lewis. “Grain Size Determination for
Parallel Processing.”

IEEE Software

, Vol. 5, No. 1, 1988, pp.
23-32.

[12] E. A. Lee, D. G. Messerschmitt. “Synchronous Data Flow.”

Proc. of the IEEE

, Vol. 75, No. 9, September 1987, pp.
1235-1245.

[13] E.A. Lee. “A Coupled Hardware and Software Architecture
for Programmable DSPs.” Ph.D. Thesis, Department of
EECS, University of California Berkeley, May 1986.

[14] J. Jonsson, J. Vasell. “Evaluation and Comparison of Task
Allocation and Scheduling Methods for Distributed Real-
Time Systems.” In

Proc. of the IEEE Workshop on Real-
Time Applications

, Montreal, Canada, October 21-25, 1996,
pp. 226-229.

[15] S. Selvakumar, C. Siva Ram Murthy. “Scheduling Prece-
dence Constrained Task Graphs with Non-Negligible Inter-
task Communication onto Multiprocessors.”

IEEE Trans. on
Parallel and Distributed Systems

, Vol. 5, No. 3, March
1994, pp. 328-336.

