
VLSI HIGH LEVEL SYNTHESIS OF FAST EXACT LEAST

MEAN SQUARE ALGORITHMS BASED ON FAST FIR FILTERS

Jean-Philippe Diguet1;2 Olivier Sentieys1 Daniel Chillet1 Jean-Luc Philippe3

1 LASTI - ENSSAT - Universit�e de Rennes, 6 rue de K�erampont, 22300 Lannion, France

eMail: sentieys@enssat.fr; http://www.enssat.fr/RECHERCHE/ARCHI
2 Currently at IMEC, Leuven, Belgium

3 LESTER - Universit�e de Bretagne Sud, 10 Rue Jean Zay, 56100 Lorient, France

ABSTRACT

This paper relates experiences of algorithmic transfor-

mations in High Level Synthesis, in the area of acoustic

echo cancellation. The processing and memory units

are automatically designed for various equivalent LMS

algorithms, in the FIR case, with important computa-

tional load. The results obtained with di�erent �lter

lengths, give an accurate prototyping of new fast ver-

sions of the LMS algorithm. It also show that a theo-

retical arithmetic reduction must be correlated to the

associated increase of memory requirements.

1. INTRODUCTION

One of the most important issue of High Level Synthe-

sis is to provide the designer (e.g. in the signal pro-

cessing area) with a tool that enables him to explore

rapidly a part of the design space. For a given applica-

tion, algorithmic transformations represent one of the

most powerfull way [1] to approach the optimal design

solution. In this paper, we focuse on algorithmic trans-

formations applied to the VLSI implementation of the

LMS algorithm. The High Level Synthesis is performed

by the CAD tool: GAUT that optimizes area of both

datapath [2] and memory unit [3], under a throughput

constraint. Adaptive �lters are widely used in many ap-

plications [4], [5]. In the special case of acoustic echo

cancellation, the large size of �nite impulse response

requires �lters about 1000-4000 taps. The computa-

tional load of such applications justify the e�orts spent

to reduce the arithmetic complexity, our goal is to test,

through high level synthesis, the e�ciency of some re-

cent methods in a VLSI context.

The LMS algorithm may be turned into updating and

�xed �ltering parts. For the updating task, we use the

method described in [6] for the FELMS algorithm that

keeps the convergence properties of the LMS while al-

lowing signi�cant reduction of the computational com-

plexity. The �xed part uses the fast FIR �ltering de-

scribed on [7], it is composed of short length FIR sub-

�lters derived from the original FIR algorithmwith the

Chineese Remainder Theorem (CRT). Contrary to the

block versions, these kind of fast algorithms generate

a processing delay independant of the �lter length (see

[8], [9]). The �ve kind of synthesized algorithms are

described in the second part.

For each algorithm and for �ve di�erent �lter sizes

(1024, 1300, 1600, 1800, 2048 taps) we have carried

out synthesis of both datapath and memory units. The

sample frequency constraint is set by the application

type to 16 KHz, the word length is 16 bits and and the

component library has been built with a 1�m technol-

ogy. The results, given in the third part, will be dis-

cuted, we will see the signi�cance of memory aspects

inherent in fast FIR techniques.

2. ALGORTIHMS

2.1. Reduction of arithmetic complexity

The �rst algorithm is the classic LMS in the FIR case.

The principle of the fast �ltering applied to the �xed

part of the LMS is a transformation of the FIR �lter

equation into two �nite degree polynomials computed

by the CRT. It decomposes the computation into three

main parts. The �rst part is concerned with the inter-

polation of the polynomial products in di�erent points

deriving di�erent algorithms in the same F (Ni; Ni)

class [8]. The second is the �ltering operation and

the �nal one is the reconstruction of the �ltered sig-

nal. An algorithm of the class F (Ni; Ni) applied to a

FIR of length L computes Ni outputs in parallel using

mi sub-�lters of lengfth L=Ni. Despite of the pre and

post-processing operations, it results in a signi�cant

reduction of the arithmetic complexity. By repeating

the process [8] on sub-�lters, the length of the �nal �l-

ters, and consequently the arithmetic complexity, can

be considerably reduced.

The algorithms discussed in this paper will be two

F (2; 2) algorithms based on di�erent intepolations

points and a F (3; 3) algorithm.

2.2. F (2; 2) - �rst version

The �rst version of the F (2; 2) is built by choosing the
following interpolation points in the pre-processing pro-

cess: f0; 1;1g. If the initial FIR �ltering is de�ned as:
Y (z) = H(z):X(z), we obtain the following equations:
Filtering part:8<

:
Y (z) =

�
Y0 + Y1:z

�1
�

X(z) =
�
X0 +X1:z

�1
�

H(z) =
�
H0 + H1:z

�1
�

n
Y0 = X0:H0 + X1:H1:z

�2

Y1 = (X0 +X1)(H0 +H1)� X0:H0 �X1:H1

(1)

Updating in accordance with the FELMS algorithm:

�
H0
H1

�
(n+1)

=

�
H0
H1

�
(n�1)

+ �

h
Xt
0
(en � en�1) + (X0 + X1)

ten�1

�Xt
0
(en � en�1) + (X1:z

�2 + X1)
ten

i
(2)

The eq. 2 has been modi�ed to reduce its complexity:

two terms are common to H0 and H1 and the sum of

Xi result from the �ltering part.

The initial �ltering requires L multiplications and ad-

ditions, the F22 algorithm needs 3L=4 multiplications

and additions for the �ltering part and 2+(3=2)(L=2�

1) additions/subtractions for the pre and post process-

ing parts. The reduction of arithmetic complexity is

therefore about 25%. The �gure 1 depicts the struc-

ture of the algorithm.

2.3. F (2; 2) - second version

The second version of the F (2; 2) uses an other set of
interpolation points: f0;�1;1g. It results in the fol-
lowing equations:
Filtering part:

n
Y0 = X0:H0 +X1:H1:z

�2

Y1 = X0:H0 +X1 +H1 � (X0 �X1)(H0 �H1)
(3)

Updating in accordance with the FELMS algorithm:

�
H0
H1

�
(n+1)

=

�
H0
H1

�
(n�1)

+ �

h
Xt
0
(en + en�1) � (X0 � X1)

ten�1

Xt
0
(en + en�1) + (X1:z

�2
� X1)

ten

i
(4)

We also get two terms common to the computation of

H0 and H1 and the substraction of the Xi terms results

from the �ltering part.

The reduction of arithmetic complexity is equal to the

previous one: 25%

2.4. F (3; 3)

The F (3; 3) algorithm computes three outputs in par-
allel. In order to avoid complex interpolations points,
it is carried out by applying two times the F (2; 2) al-
gorithm. It results in the following equations:
Filtering part:

8<
:

Y (z) =
�
Y0 + Y1:z

�1 + Y2:z
�2
�

X(z) =
�
X0 +X1:z

�1 + X2:z
�2
�

H(z) =
�
H0 +H1:z

�1 + H2:z
�2
� (5)

�
Y0 = (X0:H0 � X2:H2:z

�3) + ((X1 + X2)(H1 + H2) � X1:H1)z
�3

Y1 = ((X0 + X1)(H0 + H1) � X1:H1) � (X0:H0 � X2:H2:z
�3)

Y2 = ((X0 + X1) + X2)(H0 + H1 + H2) �

((X0 + X1)(H0 + H1) � X1:H1) � ((X1 + X2)(H1 + H2) � X1:H1)

(6)

Updating in accordance with the FELMS algorithm:

2
66664

H0

H1

H2

3
77775
(n+1)

=

2
66664

H0

H1

H2

3
77775
(n�2)

+ �

2
6666664

Xt
0
(en�2 � en�1 + en) �

(X0 + X1)
t(en�2 � en�1) +

(X1 + X2)
ten�2

�Xt
0
(en�2 � en�1 + en) +

(X0 + X1)
t(en�2 � en1) �

(X2:z
�3 + X0)(en�1 � en) +

((X2:z
�3 + X0) + (X0 + X1))

ten�1

Xt
0
(en�2 � en�1 + en) +

(X2:z
�3 + X0)

t(en�1 � en) +

(X1:z
�3 + X2:z

�3)ten

3
7777775
(7)

The complexity is now a about a third less than the

original. The eq.7 has also been formulated to enable

the re-use of terms, shared by the equations of the Hi

and the additions of the Xi, and previously computed

in the FIR part (eq. 6).

+
▲

▼

z-1 2
➞

2

➞

H0(z)2 H1(z)2+

H0(z)2

H1(z)2 ▲

▲ +
▲

▼

▲

-

-

2➞

▼

▲

▲

+ ▲

2➞

2➞ z-1
+
▼

▲

▲

pre-processing sub-filters (L/2) post-processing

X(z)

Y(z)
X0(z)2

X1(z)2

Y1(z)

Y2(z)▲
▲

Figure 1. Structure of fast FIR F22-version 1

2.5. LMS-F22F22

This fourth kind of algorithm is obtained by applying

the F(2,2) method to each sub-�lter of the initial F(2,2)

structure. The theorical complexity saving is about

44%. In fact, we will see that its memory requirements

fully lead to a prohibitiv global cost.

3. RESULTS

3.1. Estimation

Firstly we compute, with the Probabilistic Estimation

Module [10] of GAUT, the distribution of the area cost

in time. This kind of estimation is charaterized by a

high level of abstraction, it is computed without any as-

sumption on the synthesis algorithms choice. By asso-

ciate average and standard deviation we obtain a good

estimator to compare the quality of ressource utiliza-

tion in the datapath. The abstraction level prevents

from having a great accuracy. However the estimation

provides a cost from operators and registers that en-

ables the designer to make comparisons. Let note that

the cost evolution due to multiplexers, demultiplexers

and tristates is linked to the register probable numbers.

The evolution of such a probable cost as transforma-

tions are applied, enable to correctly convey the futur

cost of the datapath. Thus the e�ects of transforma-

tions may be appreciate in order to take speci�cation

decisions.

F33
F22-v2
F22-v1
Lms

x

T 2T 3T

Probable Cost

Figure 2. Functional units and registers proba-

bilistic cost estimation

On the �gure 2 the cost of functional units and reg-

isters is given for N = 2048 taps, the LMS may use

T time units to compute one output, the LMS � F22

uses 2T times units to compute two outputs in par-

allel and the LMS � F33 may use 3T time units to

compute three outputs in parallel. We observe that

the reduction of the arithmetic complexity enables the

LMS � F (N;N) algorithms to get a better area cost

distribution, the averages and standard deviation give

a reduction about 25% for the LMS �F22 algorithms

and about 30% for the LMS � F33 algorithm. The

table 3 sums up the results obtained from probabilistic

estimation and synthesis. The estimation is close to

the theory, but the memory cost does not appear here,

we will see that �nal results will be di�erent.

3.2. Synthesis

All results concerning the datapath, memory and over-

all areas for the di�erent algorithms, are given in the

table 1. The bold values represent the lower cost in

each category. So we note that the fast algorithms did

not produce the attended results, worse, the basis LMS

is sometimes better than the optimized versions. Let

analyse deeply the results.

PU area Gaut % /lms Prob. cost % /lms
(PU) (G) (op.+reg.) (PC)

LMS 20,5 - 9,35 -
LMS-F22-v1 13,6 33 7,02 25
LMS-F22-V2 13,1 36 6,9 25,2
LMS-F33 11,2 45 6,5 30

Figure 3. PU area savings from synthesis and

probabilistic estimations

The �ve algorithms seem to have the same memory

requirements: 2:L memory points for the signal vector

and the �lter coe�cients. However we note in the ta-

ble 1 that faster is the algorithm higher is the memory

cost. The extra memory cost is due �rstly, to the M

new samples vectors of length L=N that have be, in

practice, created in order to compute in parallel the

M sub-�lters. In [9] this problem is discussed for the

implementations of such fast FIR �lters on DSP, the

authors explain that the number of pointers registers

is proportional to the number of FIR sub-�lters. An

e�cient methodology is developed to reduce this num-

ber of memory registers. Otherwise, the pre and post-

processing task generate lot of temporary data that

must be loaded in memory or registers.

Area in mm2

Nb taps 1024 1300 1600 1800 2048

LMS PU 8,6 8,8 12,2 15,3 20,5
MU 3,9 3,9 5,8 7,2 7,8

Tot 12,5 12,7 18 22,5 28,3

LMS-F22-v1 PU 4,5 8,6 9,8 8,8 13,6
MU 6,5 6,2 11,5 8,6 11,6
Tot 11,1 14,3 21,3 18,3 25,3

LMS-F22-v2 PU 4,9 9 8,6 9,6 13
MU 6,8 7,5 11,5 9,2 11,8
Tot 11,7 16,5 18,8 18,9 24,8

LMS-F33 PU 5,2 8,9 9,3 9,5 11,2

MU 8,1 12,2 15,5 10,9 13,7
Tot 13,3 21,2 24,7 20,5 24,9

LMS-F22-F22 PU 5,9 8,9 9,7 11,1 11,4
MU 19,1 18,3 22,1 20,5 27,7
Tot 25 27,2 31,8 31,6 39,1

(PU: processing unit, MU: memory unit)

Table 1. Design area from behavorial synthesis

Nb Taps

UT

A
r

e
a

 m
m 2

UT + UM

UM

LMS

LMS F22 V1

LMS F22 V2

LMS F33

LMS F22F22

3

8

13

18

23

28

4

8

12

16

20

1000 1200 1400 1600 1800 2000
10

15

20

25

30

35

40

Figure 4. LMS cost vs taps

The memory cost is not the only responsible for the

extra cost observed. For instance, we note that the

LMS�F33 datapath becomes less expensive than the

LMS �F22 datapath only for a number of taps equal

to 3072, wheras it should have always been cheaper.

In fact, the memory transfers also modify the datap-

ath cost, because they generate multiplexers, demulti-

plexers and tristates. When the data transfers become

important, the cost of these small components, often

neglected in High Level Synthesis, result in a signi�-

cant extra cost.

The less is regular the algorithm the higher are mem-

ory costs. The best example is given by the algorithm

LMS-F22-F22 whose the memory requirements lead to

worst solution whatever is the taps number.

Let note that the reduction of the number of opera-

tions is not always related to a reduction of the num-

ber of components, in High Level Synthesis. If a fast

algorithm improves the rate of multiplations by unit of

time from 2:5 to 2, it saves 20% of operations but 0%

of multipliers. Moreover, a fast algorithm often breaks

partially the regularity of the initial algorithm, the con-

sequence on the synthesis is an increase of the number

of registers, multiplexers, demultiplexers and tristate

required.

In fact the e�ciency of the algorithmic reduction of

arithmetic complexity depends strongly on the rate be-

tween the initial number of operations and the though-

pout constraint. In the case of a �lter length equal to

1300, we observe that the reduction of the number of

multiplications is not su�cient to save enough multi-

pliers to make up for the increase of memory and inter-

connections resources. Consequently the classic LMS

gives the smallest area.

The results show that algorithmic transformations in

High Level Synthesis are essential to guide the designer

towards a good speci�cation choice, for a given case

study.

Finally, we observe that the fast algorithms give the

best design four times out of �ve, despite of the increase

of memory resources. The di�erence between the two

versions of the F22 algorithm is based on the number

of substractions and additions that are better balanced

in the second kind of speci�cation. In the case of 2048

taps (see �g. 5) it enables to save one adder while

sharing the time constraints between the two kinds of

operators Finally it lead to a cheaper cost for the LMS-

F22-v2 algorithm.

4. CONCLUSION AND PERSPECTIVES

In this paper we described an experience in High Level

Synthesis applied to a real life application of acoustic

echo cancellation. The designs carried out include func-

T 2T

xx

Probable number

Op. + avg. 1,64 sd. 0.89
Op. - avg. 0,18 sd. 0.15 LMS-F22-v1

T 2T

xx

Probable number

Op. + avg. 1,16 sd. 0.69
Op. - avg. 0,66 sd. 0.33 LMS-F22-v2

Figure 5. Estimations of Add. and sub. number

for the LMS-F22 algo. with 2048 taps

tional and memory units. The results obtained point

out the problem of the increase of memory unit inherent

in methods of arithmetic complexity reduction. They

also hightlight the importance of algorithmic transfor-

mations in High Level Synthesis.

The study such fast algorithms would require, in

futur, more e�orts on regularity in order to reduce

memory costs. Anyway, the best architectural solu-

tions would be the results of trade-o�s between arith-

metic complexity savings and increasing memory re-

quirments.

REFERENCES

[1] M. Potkonjak and J.M. Rabaey, VLSI Design Methodologies

for Digital Signal Processing, chapter Exploring the Algorith-

mic Design Space Using High Level Synthesis, pp. 131{167, In-
ternational Series in Engineering and Computer Science: VLSI,.

Kluwer Academic Publishers, 1994.

[2] E. Martin, O. Sentieys, H. Dubois, and J.L. Philippe, \Gaut,

an architectural synthesis tool for dedicated signal processors,"
in EURO-DAC, Hamburg, Oct. 1993, pp. 85{94.

[3] J.L. Philippe, D. Chillet, O. Sentieys, and J.Ph. Diguet, \Mem-

ory aspect in signal processing and HLS tool: some results," in
EUSIPCO, Trieste, Italy, Sept. 1996.

[4] S. Haykin, Adaptive Filter Theory, Englewood Cli�s, NJ: Pren-
tice Hall, 1986.

[5] O. Macchi, \Le Filtrage adaptatif en T�el�ecommunications,"
Annales des T�el�ecommunications, vol. 36, no. 11-12, 1981.

[6] J. Benesty and P. Duhamel, \A Fast Exact Least Mean Square

Adaptive Algorithm," IEEE Trans. on Signal Processing, vol.
40, no. 12, pp. 2904{2920, Dec. 1992.

[7] R.E. Blahut, Fast Algorithms for Signal Processing, Addison-
Wesley, Reading, MA, 1985.

[8] Z.J. Mou and P. Duhamel, \Short length FIR �lters and their
use in fast no recursive �ltering," IEEE Trans. on ASSP, 1989.

[9] A. Zerga��noh and P. Duhamel, \Implementation and perfor-

mance of composite fast FIR �ltering algortihms," in IEEE

VLSI Signal Processing, Osaka, Japan, Oct. 1995, pp. 267{276.

[10] J.Ph. Diguet, O. Sentieys, J.L. Philippe, and E. Martin, \Prob-
abilistic resource estimation for pipeline architecture," in IEEE

Workshop on VLSI S.P., Sakai, Japan, Oct. 1995, pp. 217{226.

