CONSTRUCTING MEMORY LAYOUTS FOR ADDRESS GENERATION UNITS
SUPPORTING OFFSET 2 ACCESS

Bernhard Wess and Martin Gotschlich

Institut fiir Nachrichtentechnik und Hochfrequenztechnik
Technische Universitat Wien
Gusshausstrasse 25/389, A-1040 Vienna, Austria

bwess@email.tuwien.ac.at

ABSTRACT

We present an efficient memory layout generation algo-
rithm for digital signal processors (DSPs) which takes
advantage of indirect addressing modes with auto-
modify operations. Previously proposed algorithms
are optimized with respect to offset 1 access (auto-
increment and decrement by 1). Our algorithm is based
on a heuristic since the problem of generating opti-
mum memory layouts is NP-complete. However, this
algorithm produces optimum results if a bandwidth 2
layout exists for a given program variable access se-
quence. It is verified by experimental results that our
technique achieves significant improvements over exist-
ing techniques.

1. INTRODUCTION

Modern digital signal processors (DSPs) provide ded-
icated memory address generation units (AGUs) sup-
porting address computation in parallel to other ma-
chine operations. We focus on optimized memory lay-
outs for AGUs supporting offset 2 access. Here it is
assumed that memory locations can be referenced at
no extra cost if the absolute value of the difference be-
tween the current and the next address is lower or equal
2. As an example, Motorola’s DSP56k [1] and Analog
Devices” ADSP-21xx [2] support offset 2 access. In case
of the DSP56k, there is one modify register (designated
as offset register N) associated with each address reg-
ister. The address generation hardware allows address
register updates by +1 or £N. The ADSP-21xx family
provides four modify registers for each address register
containing signed update values. For offset 2 access,
the contents of the modify registers are —2, —1, 1, and
2.

In Section 2, we define the address assignment prob-
lem (AAP) and relate it to the bandwidth minimization
problem (BMP). In Section 3, we discuss our heuris-
tic offset 2 memory layout generation algorithm which

produces optimum results if bandwidth 2 layouts ex-
ist. Section 4 presents experimental results, and con-
clusions are given in Section 5.

2. OPTIMUM ADDRESS ASSIGNMENT

Let V be the program variable set of an access sequence
S. We define an undirected graph G' = (V, E) to repre-
sent the access transitions between program variables
in S and call GG the access graph of S. Each node in the
graph corresponds to a unique program variable. For
the rest of the paper, we use the notation v € V both
for program variables of S and nodes of GG. There is an
undirected edge e = (u,v) € E in G with weight w(e) if
the program variables v and v are adjacent w(e) times
in S. Note that (G is always a connected graph.
A memory layout of G is an injective function

f:V—={l,...,N} with N > |V]

which assigns addresses to program variables. Equiva-
lently, a layout can be regarded as a string ¢ of nodes
and blanks with each node of V appearing exactly once.
The correspondence between these two definitions is
simply that f(v) = k with v € V if and only if v is the
k" element of .

As an example, consider the program variable set
V ={a,b,c,d e, f} which is accessed in the sequence

S:{a’b’c’d’e’f’a’d’a’d’a’c’d’f’a’d}'

Figure la shows the corresponding access graph G.
Figure 1b defines a memory layout which can also be
represented by the string

© = beadfe.

For the following discussion, we assume that the
target processor provides an AGU with dedicated regis-
ters. After an indirect data access, the current address



ot
—

(<3 BT U R

SN Y K= BN ol kon

(a) (b)

Figure 1: (a) Access graph, (b) memory layout.

register can be incremented by £1 or by the contents of
a modify register. Operations of this type do not em-
ploy datapath resources and thus can be executed in
parallel to other machine operations at no extra cost.
In contrast, explicit address register and modify regis-
ter load operations introduce both code size and speed
overhead. Consequently, memory layouts should be
constructed such that these load operations are min-
imized.

Suppose the AGU supports an auto-modify range
[—-r,r] where r is any positive integer. Let S be an
access sequence, GG = (V| F) the corresponding access
graph, and f a memory layout for S. We define the
memory layout cost as the sum of all access transitions
where the absolute value of the difference between the
current and the next address is larger than r,

c(f) => wle;) with e; = (u,v) € E, |f(u) — f(v)] > r.

)

Generating memory layouts for AGUs with » = 1
and a single address register (simple offset assignment,
SOA) was first studied by Bartley [3] and Liao [4].
Liao showed that SOA is equivalent to searching for
maximum-weighted Hamiltonian paths in the access
graph.

As an example, Figure 2a shows the maximum-
weighted Hamiltonian path for the access sequence de-
fined above. Traversing this path gives the optimum
memory layout f (Figure 2b) while the accumulated
weights of edges not on the path define the layout cost
(f) = 4.

Liao showed that the SOA problem is NP-complete
and proposed a heuristic algorithm. Leupers [5] refined
Liao’s SOA heuristic saving 3% addressing cost on av-
erage.

Additionally, Leupers proposed a technique for dy-
namically loading modify registers. This is done in a
post-pass optimization step after memory layout gen-
eration. However, only for variable access sequences of
length larger than 100, this technique results in signif-
icant cost reductions.

We propose to realize a larger auto-modify range by

—
S U W N =
LN NN =7l Roll kon

(b)

Figure 2: (a) Maximum-weighted Hamiltonian path,
(b) memory layout.

assigning static values to modify registers. In this case,
the number of address offsets outside the specified auto-
modify range should be minimized. For our access se-
quence, Figure 1b represents an optimum memory lay-
out for auto-modify range [—2, 2]. Note that this layout
does not correspond to a maximum-weighted Hamilto-
nian path in the access graph.

Now let us relate the AAP to the BMP of graphs.
The bandwidth bw of f is defined as the maximum
distance between the images under f of any two nodes
that are connected by an edge,

bw(f) = max {|f(u) = f(0)| | (u,v) € E}.

Figure 1b shows a bandwidth 2 layout while Figure 2b
gives an example for a layout with bandwidth 3. The
bandwidth BW of (G is defined as the least possible
bandwidth for any layout of G,

BW(G) = min{bw(f) | f is a layout of G} .

As an example, BW(G) = 2 for our access graph in
Figure la.

In contrast to the BMP, the AAP 1s not to find
BW (@) but to produce a layout f for a given modify
range [—r, 7] such that the layout cost ¢(f) becomes
minimal. Obviously, if BW(G) < r then all layouts f
with BW(G) < bw(f) < r lead to ¢ = 0.

The general BMP of graphs is NP-complete [6].

°

However, Saxe [7] showed that the problem BW () <
k for some fixed constant k can be solved in polyno-
mial time. Particularly, a linear-time algorithm exists

for the problem BW(G) < 2 [8].

We say f is an offset r layout if 1t is optimized
for modify range [—7r,7]. Obviously, all layouts f
with bw(f) < r are offset r layouts. As mentioned
above, generating optimum memory layouts is an NP-
complete problem even for the specific case r = 1. In
the next section, we discuss a heuristic algorithm which
generates offset 2 layouts. Usually, such a modify range
can be realized by assigning static values to modify reg-
isters in contemporary DSPs. Our algorithm produces



optimum memory layouts if BW((G) < 2 otherwise a
heuristic is applied minimizing the layout cost.

3. OFFSET 2 LAYOUT GENERATION
ALGORITHM

Our DSP memory layout generation algorithm is based
?

on Garey’s algorithm [8] for the problem BW(G) < 2.
It starts with an initial layout consisting of a single
program variable (node of the access graph). The al-
gorithm recursively constructs a complete layout by
adding program variables to the current partial layout.

A partial layout is an injective function f’ that is
defined only on a subset of the nodes,

FoVi—={1,... N} with V' C V and N' > [V'].

If f1 is a partial layout defined on V; and f5 is a partial
layout on Vo D Vi, we say that fs is an extension of
fiif fa(v) = fi(v) for all v € V1. Garey’s algorithm
constructs a complete layout if there is one containing
the initial layout. It terminates as soon as it detects
that the current partial layout cannot be extended to
a complete layout.

Wesay u € V' is an active node of the partial layout
' if (u,v) € F with v € V\ V', The set of successors
of an active node u is defined by

Q(u) ={v|(u,v) € E withv e V\V'}.

For the number of successors of an active node, we use
the notation n(u) = [Q(w)]. Tf A = {uy,... ux} is
the set of active nodes, then the set of all successors is

K
given by B = |J Q(u;).
i=1

Garey’s algorithm is based on an exhaustive list of
actions for the different circumstances which can arise
in the process of extending partial layouts. There are
three types of partial layouts defined by a string ¢:

(A) ¢ = aab where at most a and b are active.

(B) ¢ = a{ambm) ... {a1b1) for some m > 1 where at
most a; and by are active.

(C) ¢ = aam-...a; for some m > 1 where at most
ay 1s actlve.

« represents inactive nodes and blanks (_) which have
already been permanently placed. Type B defines two
strings adm, by, ... a1by and aby,apy, .. biay.

Let f,, be a partial layout of one of the three types.
By looking at how the active nodes interact with their
successors, 1t may be obvious that f,, cannot be com-
pleted with bandwidth 2. Otherwise the algorithm will

find a sufficiently general extension f,11 which can be
completed with bandwith 2 whenever f, can be. f,41
is again of one of the three basic types. If any suitable
extension is found, the string ¢, corresponding to f,
is replaced by the string ¢, 41 corresponding to fh41.
This process continues until either reaching an impasse
or a complete layout.

Here is how the algorithm would proceed to search
for a layout for the access graph in Figure la with the
initial layout _b:

n | Type | ¢n

0 C b initial layout

1 B b{ac)

2 A beadf

3 A beadfe | complete layout

Garey’s algorithm determines in O(n) steps with n =
|V| whether or not the access graph GG = (V| E) has a
bandwidth 2 layout beginning with the initial layout _v
where v € V. By investigating all possible initial lay-
outs, we have an O(n?) algorithm for deciding whether
or not BW(G) < 2.

It is obvious that a partial layout f’ cannot be ex-
tended to a complete layout f with bw(f) < 2 in the
following cases:

o f'is of type A with n(a) > 1 or n(b) > 2.

o [ is of type B with |@Q(a) UQ()| > 2 or n(a) =
n(b) = 2.

o [’ is of type C with n(a) > 3.

Additionally, there are more subtle cases where partial
layouts of type C with n(a) = 3 or n(a) = 2 cannot be
completed. We refer to [8] for a detailed discussion.
For generating optimized offset 2 layouts, we make
a heuristic extension step each time Garey’s algorithm
would terminate. We extend a partial layout f, to
fn+1 by adding a node set ¢ C B to f, such that
> w(e;) becomes a maximum where e; = (u,v) with

2

|[fot1() = fag1(v)] <2, u € AUC, and v € C. Here
A denotes the active nodes of f; and B the set of all
Successors.

In each heuristic extension step ¢, — @p41, at
most two nodes are added at the right end of ,,. These
nodes are new active nodes in ¢, y1. All nodes of ¢,
that are still active in ¢,41 contribute to the layout
cost. If ¢, represents a layout of type C, then addi-
tional nodes may fill some blanks.

For the access graph in Figure 3a, there is no band-
width 2 layout since node a has degree 5.

Beginning with initial layout _b, the layout genera-
tion algorithm would produce the offset 2 layout beadfe
with cost 1.



N

Figure 3: (a) Access graph, (b) heuristic extension of
partial layout @1 = b{ac) to wo = beadf.

n | Type ©n Cost

0 C b 0 initial layout

1 B b{ac) 0 - .

5 X beadf 1 heuristic extension
3 A beadfe 1 complete layout

1 represents a partial layout of type B which is heuris-
tically extended to @9 of type A. In this step, the set
of active nodes is A = {a, ¢} and the successor set is
B = {d,e, f}. d and f become new active nodes in
9. a remains active because its successor node e has
not been placed. Since node e cannot be placed within
the modify range [—2, 2] of a, the partial layout cost is
increased by the weight of edge (a, e) (Figure 3b).

4. RESULTS

For unbiased comparison of techniques, we performed
experiments on random access sequences. The random
access sequences are defined by the number of program
variables |V] and the sequence length |S|. Table 1 sum-
marizes the average addressing costs. On average, the
proposed technique outperforms both Liao’s and Le-
upers” SOA algorithm by 48% and 44%, respectively.
Even for the largest example, the computation time is
in the range of milliseconds on a Pentium PC.

[ IVI | IS] | Liao | Leupers | Proposed |

5 10 2.2 2.1 0.1
5 20 5.4 5.3 0.8
15 | 20 5.1 4.7 1.9
10 | 50 | 23.1 22.7 14.0
40 | 50 | 13.6 12.1 7.2
10 | 100 | 51.0 50.7 39.1
50 | 100 | 52.5 47.9 39.6
80 | 100 | 28.0 24.6 18.4
100 | 200 | 110.9 101.0 86.0

Table 1: Comparison of layout generation algorithms.

5. CONCLUSIONS

We have related the AAP for DSPs to the BMP of
graphs. These problems are known to be NP-complete.
Contemporary DSPs support offset 2 layouts. For
this case, we presented an efficient heuristic algorithm
which produces optimum results if bandwidth 2 lay-
outs exist. Experimental results show that significant
improvements over existing techniques can be achieved.

6. ACKNOWLEDGEMENTS

The authors would like to thank Franz Rendl from TU
Graz for helpful discussions. This work has been sup-
ported by ONB grant 5491.

7. REFERENCES

[1] Motorola, Inc., DSP56000 Digital Signal Processor
Family Manual, 1992.

[2] Analog Devices, Inc., ADSP-2100 Family User’s
Manual, 1993.

[3] D. H. Bartley, “Optimizing stack frame accesses
for processors with restricted addressing modes”,
Software-Practice and Ezxperience, vol. 22, pp. 101-
110, February 1992.

[4] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang, “Storage assignment to decrease code
size”, in Proceedings of the ACM Conference on
Programming Language Design and Implementa-

tion, pp. 186195, June 1995.

[5] R. Leupers and P. Marwedel, “Algorithms for ad-
dress assignment in DSP code generation”, in Pro-
ceedings of the ACM/IEEE ICCAD’96, pp. 109-
112, San Jose, November 1996.

[6] C. H. Papadimitriou, “The NP-completeness of
the bandwidth minimization problem”, Comput-

wng, vol. 16, pp. 263-270, 1976.

[7] J. B. Saxe, “Dynamic-programming algorithms for
recognizing small-bandwidth graphs in polynomial
time”, SIAM J. Alg. Disc. Meth., vol. 1, pp. 363—
369, December 1980.

[8] M. R. Garey, R. L. Graham, D. S. Johnson, and
D. E. Knuth, “Complexity results for bandwidth
minimization”, STAM J. Appl. Math., vol. 34, pp.
477-495, May 1978.



