
CONSTRUCTING MEMORY LAYOUTS FOR ADDRESS GENERATION UNITS

SUPPORTING OFFSET 2 ACCESS

Bernhard Wess and Martin Gotschlich

Institut f�ur Nachrichtentechnik und Hochfrequenztechnik

Technische Universit�at Wien

Gusshausstrasse 25/389, A-1040 Vienna, Austria

bwess@email.tuwien.ac.at

ABSTRACT

We present an e�cient memory layout generation algo-
rithm for digital signal processors (DSPs) which takes
advantage of indirect addressing modes with auto-
modify operations. Previously proposed algorithms
are optimized with respect to o�set 1 access (auto-
increment and decrement by 1). Our algorithm is based
on a heuristic since the problem of generating opti-
mum memory layouts is NP-complete. However, this
algorithm produces optimum results if a bandwidth 2
layout exists for a given program variable access se-
quence. It is veri�ed by experimental results that our
technique achieves signi�cant improvements over exist-
ing techniques.

1. INTRODUCTION

Modern digital signal processors (DSPs) provide ded-
icated memory address generation units (AGUs) sup-
porting address computation in parallel to other ma-
chine operations. We focus on optimized memory lay-
outs for AGUs supporting o�set 2 access. Here it is
assumed that memory locations can be referenced at
no extra cost if the absolute value of the di�erence be-
tween the current and the next address is lower or equal
2. As an example, Motorola's DSP56k [1] and Analog
Devices' ADSP-21xx [2] support o�set 2 access. In case
of the DSP56k, there is one modify register (designated
as o�set register N) associated with each address reg-
ister. The address generation hardware allows address
register updates by �1 or �N. The ADSP-21xx family
provides four modify registers for each address register
containing signed update values. For o�set 2 access,
the contents of the modify registers are �2, �1, 1, and
2.

In Section 2, we de�ne the address assignment prob-

lem (AAP) and relate it to the bandwidth minimization

problem (BMP). In Section 3, we discuss our heuris-
tic o�set 2 memory layout generation algorithm which

produces optimum results if bandwidth 2 layouts ex-
ist. Section 4 presents experimental results, and con-
clusions are given in Section 5.

2. OPTIMUM ADDRESS ASSIGNMENT

Let V be the program variable set of an access sequence

S. We de�ne an undirected graph G = (V;E) to repre-
sent the access transitions between program variables
in S and call G the access graph of S. Each node in the
graph corresponds to a unique program variable. For
the rest of the paper, we use the notation v 2 V both
for program variables of S and nodes of G. There is an
undirected edge e = (u; v) 2 E in G with weight w(e) if
the program variables u and v are adjacent w(e) times
in S. Note that G is always a connected graph.

A memory layout of G is an injective function

f : V ! f1; : : : ; Ng with N � jV j

which assigns addresses to program variables. Equiva-
lently, a layout can be regarded as a string ' of nodes
and blanks with each node of V appearing exactly once.
The correspondence between these two de�nitions is
simply that f(v) = k with v 2 V if and only if v is the
kth element of '.

As an example, consider the program variable set
V = fa; b; c; d; e; fg which is accessed in the sequence

S = fa; b; c; d; e; f; a; d; a; d; a; c; d; f; a; dg:

Figure 1a shows the corresponding access graph G.
Figure 1b de�nes a memory layout which can also be
represented by the string

' = bcadfe:

For the following discussion, we assume that the
target processor provides an AGU with dedicated regis-
ters. After an indirect data access, the current address

a

b

c d

e

f

1

1
2

1

1

2

5
1 1

e

f

d

a

c

b

6

5

4

3

2

1

(a) (b)

Figure 1: (a) Access graph, (b) memory layout.

register can be incremented by �1 or by the contents of
a modify register. Operations of this type do not em-
ploy datapath resources and thus can be executed in
parallel to other machine operations at no extra cost.
In contrast, explicit address register and modify regis-
ter load operations introduce both code size and speed
overhead. Consequently, memory layouts should be
constructed such that these load operations are min-
imized.

Suppose the AGU supports an auto-modify range
[�r; r] where r is any positive integer. Let S be an
access sequence, G = (V;E) the corresponding access
graph, and f a memory layout for S. We de�ne the
memory layout cost as the sum of all access transitions
where the absolute value of the di�erence between the
current and the next address is larger than r,

c(f) =
P

i

w(ei) with ei = (u; v) 2 E, jf(u)� f(v)j > r.

Generating memory layouts for AGUs with r = 1
and a single address register (simple o�set assignment,

SOA) was �rst studied by Bartley [3] and Liao [4].
Liao showed that SOA is equivalent to searching for
maximum-weighted Hamiltonian paths in the access
graph.

As an example, Figure 2a shows the maximum-
weighted Hamiltonian path for the access sequence de-
�ned above. Traversing this path gives the optimum
memory layout f (Figure 2b) while the accumulated
weights of edges not on the path de�ne the layout cost
c(f) = 4.

Liao showed that the SOA problem is NP-complete
and proposed a heuristic algorithm. Leupers [5] re�ned
Liao's SOA heuristic saving 3% addressing cost on av-
erage.

Additionally, Leupers proposed a technique for dy-
namically loading modify registers. This is done in a
post-pass optimization step after memory layout gen-
eration. However, only for variable access sequences of
length larger than 100, this technique results in signif-
icant cost reductions.

We propose to realize a larger auto-modify range by

a

b

c d

e

f

1

1
2

1

1

2

5
1 1

e

f

a

d

c

b

6

5

4

3

2

1

(a) (b)

Figure 2: (a) Maximum-weighted Hamiltonian path,
(b) memory layout.

assigning static values to modify registers. In this case,
the number of address o�sets outside the speci�ed auto-
modify range should be minimized. For our access se-
quence, Figure 1b represents an optimummemory lay-
out for auto-modify range [�2; 2]. Note that this layout
does not correspond to a maximum-weighted Hamilto-
nian path in the access graph.

Now let us relate the AAP to the BMP of graphs.
The bandwidth bw of f is de�ned as the maximum
distance between the images under f of any two nodes
that are connected by an edge,

bw(f) = maxfjf(u) � f(v)j j (u; v) 2 Eg :

Figure 1b shows a bandwidth 2 layout while Figure 2b
gives an example for a layout with bandwidth 3. The
bandwidth BW of G is de�ned as the least possible
bandwidth for any layout of G,

BW (G) = minfbw(f) j f is a layout of Gg :

As an example, BW (G) = 2 for our access graph in
Figure 1a.

In contrast to the BMP, the AAP is not to �nd
BW (G) but to produce a layout f for a given modify
range [�r; r] such that the layout cost c(f) becomes
minimal. Obviously, if BW (G) � r then all layouts f
with BW (G) � bw(f) � r lead to c = 0.

The general BMP of graphs is NP-complete [6].

However, Saxe [7] showed that the problem BW (G)
?

�
k for some �xed constant k can be solved in polyno-
mial time. Particularly, a linear-time algorithm exists

for the problem BW (G)
?

� 2 [8].
We say f is an o�set r layout if it is optimized

for modify range [�r; r]. Obviously, all layouts f

with bw(f) � r are o�set r layouts. As mentioned
above, generating optimum memory layouts is an NP-
complete problem even for the speci�c case r = 1. In
the next section, we discuss a heuristic algorithmwhich
generates o�set 2 layouts. Usually, such a modify range
can be realized by assigning static values to modify reg-
isters in contemporary DSPs. Our algorithm produces

optimum memory layouts if BW (G) � 2 otherwise a
heuristic is applied minimizing the layout cost.

3. OFFSET 2 LAYOUT GENERATION

ALGORITHM

Our DSP memory layout generation algorithm is based

on Garey's algorithm [8] for the problem BW (G)
?

� 2.
It starts with an initial layout consisting of a single
program variable (node of the access graph). The al-
gorithm recursively constructs a complete layout by
adding program variables to the current partial layout .

A partial layout is an injective function f 0 that is
de�ned only on a subset of the nodes,

f 0 : V 0 ! f1; : : : ; N 0g with V 0 � V and N 0 � jV 0j.

If f1 is a partial layout de�ned on V1 and f2 is a partial
layout on V2 � V1, we say that f2 is an extension of
f1 if f2(v) = f1(v) for all v 2 V1. Garey's algorithm
constructs a complete layout if there is one containing
the initial layout. It terminates as soon as it detects
that the current partial layout cannot be extended to
a complete layout.

We say u 2 V 0 is an active node of the partial layout
f 0 if (u; v) 2 E with v 2 V n V 0. The set of successors
of an active node u is de�ned by

Q(u) = fvj(u; v) 2 E with v 2 V n V 0g.

For the number of successors of an active node, we use
the notation n(u) = jQ(u)j. If A = fu1; : : : ; uKg is
the set of active nodes, then the set of all successors is

given by B =
KS

i=1

Q(ui).

Garey's algorithm is based on an exhaustive list of
actions for the di�erent circumstances which can arise
in the process of extending partial layouts. There are
three types of partial layouts de�ned by a string ':

(A) ' = �ab where at most a and b are active.

(B) ' = �hambmi : : : ha1b1i for some m � 1 where at
most a1 and b1 are active.

(C) ' = � am : : : a1 for some m � 1 where at most
a1 is active.

� represents inactive nodes and blanks () which have
already been permanently placed. Type B de�nes two
strings �ambm : : :a1b1 and �bmam : : : b1a1.

Let fn be a partial layout of one of the three types.
By looking at how the active nodes interact with their
successors, it may be obvious that fn cannot be com-
pleted with bandwidth 2. Otherwise the algorithm will

�nd a su�ciently general extension fn+1 which can be
completed with bandwith 2 whenever fn can be. fn+1
is again of one of the three basic types. If any suitable
extension is found, the string 'n corresponding to fn
is replaced by the string 'n+1 corresponding to fn+1.
This process continues until either reaching an impasse
or a complete layout.

Here is how the algorithm would proceed to search
for a layout for the access graph in Figure 1a with the
initial layout b:

n Type 'n
0 C b initial layout
1 B bhaci
2 A bcadf

3 A bcadfe complete layout

Garey's algorithm determines in O(n) steps with n =
jV j whether or not the access graph G = (V;E) has a
bandwidth 2 layout beginning with the initial layout v

where v 2 V . By investigating all possible initial lay-
outs, we have an O(n2) algorithm for deciding whether
or not BW (G) � 2.

It is obvious that a partial layout f 0 cannot be ex-
tended to a complete layout f with bw(f) � 2 in the
following cases:

� f 0 is of type A with n(a) > 1 or n(b) > 2.

� f 0 is of type B with jQ(a) [Q(b)j > 2 or n(a) =
n(b) = 2.

� f 0 is of type C with n(a) > 3.

Additionally, there are more subtle cases where partial
layouts of type C with n(a) = 3 or n(a) = 2 cannot be
completed. We refer to [8] for a detailed discussion.

For generating optimized o�set 2 layouts, we make
a heuristic extension step each time Garey's algorithm
would terminate. We extend a partial layout fn to
fn+1 by adding a node set C � B to fn such thatP

i

w(ei) becomes a maximum where ei = (u; v) with

jfn+1(u) � fn+1(v)j � 2, u 2 A [C, and v 2 C. Here
A denotes the active nodes of fn and B the set of all
successors.

In each heuristic extension step 'n ! 'n+1, at
most two nodes are added at the right end of 'n. These
nodes are new active nodes in 'n+1. All nodes of 'n
that are still active in 'n+1 contribute to the layout
cost. If 'n represents a layout of type C, then addi-
tional nodes may �ll some blanks.

For the access graph in Figure 3a, there is no band-
width 2 layout since node a has degree 5.

Beginning with initial layout b, the layout genera-
tion algorithmwould produce the o�set 2 layout bcadfe
with cost 1.

a

b

c d

e

f

1

1
2

1

1

2

5

1

1 1

a

b

c d

e

f

1

1
2

1

1

2

5

1

1 1

(a) (b)

Figure 3: (a) Access graph, (b) heuristic extension of
partial layout '1 = bhaci to '2 = bcadf .

n Type 'n Cost
0 C b 0 initial layout
1 B bhaci 0
2 A bcadf 1

heuristic extension

3 A bcadfe 1 complete layout

'1 represents a partial layout of type B which is heuris-
tically extended to '2 of type A. In this step, the set
of active nodes is A = fa; cg and the successor set is
B = fd; e; fg. d and f become new active nodes in
'2. a remains active because its successor node e has
not been placed. Since node e cannot be placed within
the modify range [�2; 2] of a, the partial layout cost is
increased by the weight of edge (a; e) (Figure 3b).

4. RESULTS

For unbiased comparison of techniques, we performed
experiments on random access sequences. The random
access sequences are de�ned by the number of program
variables jV j and the sequence length jSj. Table 1 sum-
marizes the average addressing costs. On average, the
proposed technique outperforms both Liao's and Le-
upers' SOA algorithm by 48% and 44%, respectively.
Even for the largest example, the computation time is
in the range of milliseconds on a Pentium PC.

jV j jSj Liao Leupers Proposed

5 10 2.2 2.1 0.1
5 20 5.4 5.3 0.8
15 20 5.1 4.7 1.9
10 50 23.1 22.7 14.0
40 50 13.6 12.1 7.2
10 100 51.0 50.7 39.1
50 100 52.5 47.9 39.6
80 100 28.0 24.6 18.4
100 200 110.9 101.0 86.0

Table 1: Comparison of layout generation algorithms.

5. CONCLUSIONS

We have related the AAP for DSPs to the BMP of
graphs. These problems are known to be NP-complete.
Contemporary DSPs support o�set 2 layouts. For
this case, we presented an e�cient heuristic algorithm
which produces optimum results if bandwidth 2 lay-
outs exist. Experimental results show that signi�cant
improvements over existing techniques can be achieved.

6. ACKNOWLEDGEMENTS

The authors would like to thank Franz Rendl from TU
Graz for helpful discussions. This work has been sup-
ported by �ONB grant 5491.

7. REFERENCES

[1] Motorola, Inc., DSP56000 Digital Signal Processor

Family Manual, 1992.

[2] Analog Devices, Inc., ADSP-2100 Family User's

Manual, 1993.

[3] D. H. Bartley, \Optimizing stack frame accesses
for processors with restricted addressing modes",
Software-Practice and Experience, vol. 22, pp. 101{
110, February 1992.

[4] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang, \Storage assignment to decrease code
size", in Proceedings of the ACM Conference on

Programming Language Design and Implementa-

tion, pp. 186{195, June 1995.

[5] R. Leupers and P. Marwedel, \Algorithms for ad-
dress assignment in DSP code generation", in Pro-

ceedings of the ACM/IEEE ICCAD'96, pp. 109{
112, San Jose, November 1996.

[6] C. H. Papadimitriou, \The NP-completeness of
the bandwidth minimization problem", Comput-

ing, vol. 16, pp. 263{270, 1976.

[7] J. B. Saxe, \Dynamic-programming algorithms for
recognizing small-bandwidth graphs in polynomial
time", SIAM J. Alg. Disc. Meth., vol. 1, pp. 363{
369, December 1980.

[8] M. R. Garey, R. L. Graham, D. S. Johnson, and
D. E. Knuth, \Complexity results for bandwidth
minimization", SIAM J. Appl. Math., vol. 34, pp.
477{495, May 1978.

