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ABSTRACT

Digital Signal Processors (DSPs) have become key compo-
nents for the implementation of digital signal processing sy-
stems. With DSPs moving into new application domains
and the increasing complexity of modern DSP architectu-
res, e�cient programming support receives major interest.
Therefore, an optimizing compiler becomes a must for fu-
ture DSP-architectures. Todays DSP compilers result in sig-
ni�cant overheads both in memory consumption and pro-
gram execution time compared to hand-written assembly
code. This is mainly due to an ine�cient compiler support
of the DSP speci�c architectural features, such as the mo-
dulo-addressing capability which is an enabeling feature for
a large class of DSP algorithms. Within this paper we ana-
lyze why existing compilers fail short in supporting the mo-
dulo-addressing mode and present a compiler concept that
allows the e�cient utilization of this feature. We describe
how an advanced compiler optimization strategy allows a near
optimum support of the modulo-addressing mode, and point
out why this concept is favorable to DSP-speci�c language
extensions.

I INTRODUCTION

When it comes to the implementation of digital signal pro-
cessing systems, the designer faces several, apparently cont-
radictory, requirements:
systems of ever increasing complexity have to be realized wit-
hin a reduced time resulting in minimum costs and short
time-to-market. In order to match all these requirements,
advanced tool support is crucial.
If the implementation calls for a programmable architec-

ture, digital signal processors (DSP) appear to be favorable.
DSP-features include:
� single cycle multiply-accumulate
� distributed data memory ( modi�ed Harvard architec-
ture)

� small (and in general heterogeneous) register sets
� advanced addressing modes, such as bit-reversed and
modulo

System design starts with a high level language (HLL)
description of the system. On the other hand, DSP-
implementations are realized using hand-written assembly
code which allows to result in runtime and memory e�cient
implementations. This manual assembly coding process is
time-consuming and code maintainance is a di�cult and er-
ror prone task. Keeping the design constraints in mind, hand
coded assembly will not be a future option.
A signi�cant speedup in the design process could be achie-

ved if optimizing HLL-compiler were available. Up to now,
this approach is restricted by the suboptimum code gene-
ration capabilities of existing compilers. This has been in-
dicated especially by the DSPstone compiler benchmarking
project [1,2]. So the advantages in design time would be

more than compensated by the higher price per shipped de-
vice since more memory and a faster chip might be necessary.
Because of the urgent need for a design speedup, it beco-

mes a must to signi�cantly improve the design ow HLL !
compiler ! target code. An analysis of existing compilers
shows that these fail short in addressing the DSP-speci�c ar-
chitectural features.
In order to identify possible improvements in the compi-

lation process, it is necessary to take a closer look at the
compiler principle (�g.1).
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Figure 1. The compiler principle

Four reasons might be encountered for code ine�ciencies:
� the limited expressive power of the speci�cation language
does not allow to utilize the architecture speci�c features
- this would call for the introduction of DSP-speci�c lan-
guage extensions [3,4].

� the source code formulation prohibits the e�cient uti-
lization of the DSP-speci�c features - this would call for
programmer's guidelines.

� the compiler itself is sub-optimum and does not utilize
the information that is inherent to the code
{ because the intermediate representation (IR) does
not allow to represent the information - this would
call for an extension of the IR

{ because the code generator does not make use of the
information - this would call for more intelligent op-
timization strategies

Recently, advanced concepts to improve DSP-compilers
with regard to memory bank and register allocation have been
presented [5,6,7]. For these speci�c problems it has been iden-
ti�ed that the ine�ciencies are rooted in the code generator,
so that there would be no need for a programmer directed al-
location of data via language extensions to fully exploit these
DSP-speci�c capabilities.
Within this paper we analyze the compiler optimization

problem with a focus on the DSP-speci�c modulo-addressing
mode which is of major importance for digital �lter realiza-
tions. After a short introduction to the modulo-addressing
principles in sec. 2, sec. 3 comes with a thorough analysis
of the implications of di�erent C-coding styles. The internal
representation and the code generation principles are subject
of sec. 4. In sec. 5 we present a code-generator concept that
allows to e�ciently transfer the modulo-information of the
IR into optimized code. This is based on the introduction of



the Circular Bu�er Table concept. Finally, benchmarking re-
sults for di�erent C-code versions and di�erent optimization
strategies come with sec. 6.
II MODULO ADDRESSING: BASICS AND

APPLICATIONS

Modulo addressing allows to access data from a prede�ned
memory partition de�ned by a base address base and the
bu�er size N, in a speci�c order. A mathematical description
of the actual address, where count is an arbitrary counter
variable, is as follows

addr = base+ (count mod N)

= base+ (count� bcount=Nc �N)

The mod operator guarantees that once addr crosses the upper
or the lower bound, it is wrapped around. Figure 2 illustrates
the access for di�erent values of count.

base 

base + N -1

count = -N, 0, N, 2N, ...
count = -N+1, 1, N+1, 2N+1, ...

count = -1, N-1, 2N-1, 3N-1,...

.... ....

Figure 2. Memory access for di�erent values of count

This addressing mode is very attractive for the realization
of digital �ltering operations working on streams of data. A
typical mathematical formulation of such a �ltering operation
is the "gliding window" structure of a convolution where the
result y at time n depends on N subsequent input samples x.

y(n) =

N�1X
k=0

ckx(n� k) (1)

Only the N last input samples are necessary. For calculating
output sample y(n+1), the oldest sample x(n-N-1) is not re-
quired anymore but a new sample x(n+1) has to be included.
We achieve an e�cient realization using modulo addressing
with a memory partition of length N.

III C-CODE ANALYSIS

With respect to supporting the modulo-operation, one must
analyze the C-code with regard to the explicit allocation of
data to memory.
Fig.3 shows a straightforward C-formulation of the algo-

rithm described by eqn.(1). This code calls for a speci�c

(1) accu = 0;
(2) for (i=0 ; i < (N-1) ; i++){
(3) accu += c[i] * x[z--];
(4) x[z+1] = x[z];

}
(5) accu += c[N-1] * x[z--];
(6) x[z+1] = next_X;

Figure 3. C-code: FIR �lter simulating a gliding window

data allocation in memory: after processing a data sample
x (line(3)) it is explicitly shifted in memory (line(4)). The-
refore the newest data sample is bound to the base address.
The compiler cannot decide whether the algorithm has been
programmed that way by intention, e.g. to guarantee the
correct data allocation in case of an interrupt or a DMA, or
if the programmer simply stayed close to the algorithmic for-
mulation and did not care about the actual data allocation.
As a consequence, the memory shift has to be implemented
in the target code, resulting in a data allocation as presented
in �gure 5a.
A functional equivalent formulation of the �ltering opera-

tion without explicit memory shift performs the data access

(1) accu = 0;
(2) for (i=0 ; i <= (N-1) ; i++)
(3) accu += c[i] * x[(z-- % N];
(4) x[z-- % N] = next_X;

Figure 4. C-code: FIR �lter using circular addressing

based on a circular bu�er realization. Fig. 4 shows the C-
code. x de�nes the base address of the bu�er, N its length.
Therefore the circular bu�er is completely speci�ed. With
this formulation, the newest sample resides anywhere in the
circular bu�er, the C formulation does not impose any re-
striction to the location within the speci�ed memory section.
The data allocation information inherent in the C code is
that input data has to be allocated in a circular bu�er way.
As in the previous formulation, the compiler has no freedom
in its decision how to arrange the memory allocation. Fig. 5b
illustrates the resulting data allocation.
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Figure 5. Data allocation for the (a) gliding window formu-
lation (b) circular bu�er formulation

Since the compiler is forced to allocate the data in a cir-
cular bu�er way, the modulo-formulation of the �ltering ope-
ration obviously is not suited if there is no circular bu�er
support by the hardware. This would mean to emulate a
circular bu�er. Hence, for a general purpose processor with-
out modulo-addressing capability the direct formulation is
favorable. For a DSP coming with the modulo-addressing
capability the circular-bu�er formulation should clearly be
bene�cial. An optimizing compiler should be able to extract
the source code information about the speci�c way of data
allocation.
As pointed out, di�erent architectural classes require spe-

ci�c functional descriptions even in a HLL to enable an ef-
�cient utilization of the hardware capabilities. So why not
using language extensions which appear to be speci�c pro-
gramming styles, too? The key is portability, which covers
� functional portability: the description can be transfer-
red to a di�erent target and the compiler can generate
functionally correct code

� performance portability: when transferring the descrip-
tion to a di�erent the compiler can generate e�cient
code.

Up to now language extensions are processor speci�c [4], so
no portability can be found at all. Even if a standardization
of DSP-speci�c language extensions would be reached [3], fun-
ctional portability would be limited to the architectural class
of DSPs only. It is impossible to test the functionality on
a host machine without a compiler support of the speci�c
extensions.
In contrast to this, the modulo-speci�c C-coding style en-

ables performance portability for all modulo-addressing ar-
chitectures with no need for an extension of the standard.
Most important, functional portability is guaranteed for all
machines that come with an ANSI-C compiler.
As a consequence, DSP-speci�c language extensions should

be limited to those architectural features that can not be
utilized from the information that is inherent to the C-code.



IV THE IR AND TREE-REWRITING RULES

The intermediate representation (IR) serves as an interface
between front-end and code generator. In majority, it is based
on tree structures [9], where operators constitute the nodes,
and operands constitute the leaves of the tree. Fig. 6 shows
an IR tree for the assignment statement r := a * b[z]. The
leaves in the tree are type attributes with subscripts; the sub-
script indicates the value of the attribute. The ind operator
makes its argument a memory address.

action:
   r0  = mem_b;
   r1  = mem_z;
   dp = r0 + r1;

Figure 6. Intermediate Code Tree for r := a * b[z]

One reliable way of target-code generation is to repre-
sent the instructions of the target machine by a set of tree-
rewriting rules, called a tree-translation-scheme [10]. A tree-
rewriting rule is a statement like

replacement � template f cost g = f action g
where a replacement is a single node that replaces the IR tree,
a template is a tree that has to be matched with the IR tree,
an action is an emitted target code fragment and cost indica-
tes the costs associated with this template. Fig.6 shows the
action for the indirect addressing, the template comes with
cost = 3. An optimizing code generation matches all templa-
tes of the tree-rewriting rules of the target machine against
the subtrees of the IR tree during a depth- �rst traversal of
the tree, searching for a minimum cost matching.
For an e�cient tree matching it is necessary to have a tem-

plate tree that can be easily identi�ed within the complete
tree. This allows to keep the complexity of the tree mat-
ching procedure manageable. Since the modulo-addressing
information is useful for the code generation as it is, a %-node
must be available in the IR. The representation of base[count
% N] using the %-node can be found in �g.7b. The %-node is
already available for some IR. So far, even if this node exists,
handling the information is far from being e�cient. This is
due to the fact that the compiler does not distinguish whether
the modulo-operation is used as an arithmetic expression or
as an address calculation. Whenever a %-operator is identi-
�ed, it is transferred into a functional equivalent representa-
tion, e.g.:

count % N

if N = 2k : count & 011::11| {z }
k

(2)

else : count� int(
count

N
) �N (3)

(Notice that eqn.(3) is a compiler dependent representation of
the modulo-operation, since ANSI-C refers it to the compiler
how to handle negative values of count.) The representation
of a modulo-addressing mode following eqn.(3) is presented
by �g.7a. Keeping in mind the lack of the modulo-addressing
mode for general purpose processors, a unique handling of
modulo-arithmetic and modulo-addressing does not come as a
surprise. Most DSP-compilers simply have been ported from
compilers that originally have been built for these general
purpose architectures.

As stated above, when the modulo-operation is used to
specify an address, there is no use in transferring the modulo
information into a (functionally equivalent) arithmetic repre-
sentation. Therefore, if an architecture supports the modulo-
addressing mode, the compiler has to distinguish whether an
arithmetic operation or an address calculation is performed
using the modulo-operator. Di�erent from todays concepts,
the IR remains unchanged during optimization steps if the %
node can be identi�ed to be part of an address calculation.
Identi�cation is possible by an upward traversal of the tree:
if an ind-node is found, the structure remains unchanged,
otherwise the node is replaced in the traditional way.
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Figure 7. (a) arithmetic expansion, (b) modulo node %

V OPTIMIZING CODE GENERATOR

Using the information inherent to the IR-tree, it should
be possible for the code generator to identify the modulo-
addressing in principle. If we assume that code genera-
tion is based on tree matching, it must be analyzed which
templates are available for matching the modulo-addressing
representation within the IR. As an example, we use the
NEC �PD7701x [11] instruction set which serves as a re-
ference target for the results in sec.6. Fig.8 identi�es the
sequences of actions that are related to the C-formulation
(r=base[count%N]) and the assembly code statement (r1 =
*dp1 %%), respectively.

(1) modulo operation on count
(2) assignment to r
(3) increment count

(1’) assignment to r1
(2’) increment dp1
(3’) modulo operation on d1(1) modulo operation on count

(2) assignment to r
(3) increment count

(1’) assignment to r1
(2’) increment dp1
(3’) modulo operation on d1

.....

a) b)

Figure 8. Modulo addressing (a) C-code,(b) assembly

Obviously, directly matching one modulo instruction with
one assembly instruction (white background) results in a con-
siderable overhead, since action (1) has to be emulated in
assembly �rst, and action (3') has to be reset. However,
when there are successive accesses to the circular bu�er (gray
background), a much better matching and a reduced relative
overhead result. By taking a closer look at the C-code for
typical DSP-applications that utilize the modulo-addressing
capabilitiy, e.g. the FIR-�lter (�g.4), it becomes clear that
these call for exactly this periodic access. To identify the



periodic matching the code generator has to identify adja-
cent accesses to a circular bu�er i.e. di�erent accesses to the
same bu�er, where there is a path in the program ow graph
between the two bu�er accesses with no other access to the
same bu�er. This is impossible by just using the simple tree
rewriting rules but requires an additional information struc-
ture, introduced by us as a Circular Bu�er Table (CBT).
The CBT-concept is derived from the well known symbol

table concept [9]. Fig. 9 illustrates the concept by an exam-
ple.

for (i=0;i<N,i++) {
    out = out + base[count%N];
    count--;
    out = out - base[count%N];
    count = count - 2;
}

Buffer:          A
Start:        base
Length:         N
Modification:
transition mod.

(1) -> (2)     -1
(2) -> (1)     -2

Buffer A

count:  -1
Buffer A

count: -2

(1)

(2)

program flow graph circular buffer table

2nd access

1st access

2nd access

1st access

Figure 9. The Circular Bu�er Table (CBT) concept

The example shows the stored information for a single CBT
entry. This information consists of 4 sections:
� Bu�er assigns a symbolic name to the circular bu�er,
� Start indicates the lower bound of the circular bu�er,
� Length informs about the bu�er length,
� Modi�cation informs about the step size between two
adjacent accesses

Whenever a modulo addressing is identi�ed in the tree struc-
ture, it is checked whether it is an access to a circular bu�er
that is already included in the CBT. Otherwise a new entry to
the CBT is generated. Compared to the concept of language
extensions the CBT approach comes with several advantages:
� monitoring of each circular bu�er for the complete pro-
gram ow. Initialization of the circular bu�er is neces-
sary only once.

� no limitation on the number of circular bu�ers. If there
are more circular bu�ers in the program than can be
handled by the hardware, a context switch is possible,
similar to register spills.

� no explicit initialization of the registers of the circular
bu�er by the programmer. He can concentrate on the
functional part of the algorithm

VI RESULTS

The following benchmarking results have been achieved for
the NEC �PD7701x architecture [11] for a simple 4-tap FIR-
�lter. The '-ref' indicates the hand-optimized assembly refe-
rence code, '-gw' the gliding window C-code formulation of
�g.3, '-cb' the circular bu�er C-code formulation of �g. 4.
Since the NEC-compiler supports DSP-speci�c language ex-
tensions, we included the benchmarking results as well,: '-cb-
ext' indicates only the extensions for circular bu�er support
have been applied, '-all-ext' stands for all possible extensions.
Results indexed with 'COTS (commercial-of-the-shelf)'

were obtained using the compiler delivered by the vendor, 'op-
timizing (CBT)' gives the results when modulo-addressing is
supported in the way described above. 'all optimizations' in-
dicates that in addition to the CBT-approach optimum data
memory allocation [5,6] as well as data type matching [12]
has been done by the compiler.

code compiler clock program data
cycles words words

�r-ref.asm no 20 6 34
�r-gw.c COTS 436 36 35
�r-cb.c COTS 582 57 35
�r-cb-ext.c COTS 84 9 33
�r-cb.c optimizing (CBT) 84 9 33
�r-all-ext.c COTS 21 7 34
�r-cb.c all optimizations 21 7 34
The results indicate that advanced compiler concepts allow

to signi�cantly improve the code quality. It also states that
language extensions can be seen as a short term solution for
improving existing compilers. For the speci�c language ex-
tensions used here (memory bank allocation, fractional data
type, modulo-addressing) the results show that the informa-
tion can be extracted by an optimizing compiler.

VII SUMMARY

The design requirements for digital signal processing systems
call for a signi�cant improvement of the compiler generated
code quality. Analysis indicated the ine�cient utilization of
DSP-speci�c architectural features. Within this paper it has
been pointed out that the propagation of inherent source code
information might require an adaption of the internal repre-
sentation of the compiler to the target code capabilities. As
well, a more complex and sophisticated code generator is ne-
cessary, accounting for most of the e�ort that has to be spent
for compiler improvements. All compiler optimizations are
worthless if the source code does not include the necessary
information. As a consequence, the DSP-programmer must
have a basic understanding of the DSP-speci�c hardware fea-
tures but is not asked to be familiar with a speci�c instruction
set.
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