
COOPERATIVE REGISTER ASSIGNMENT AND CODE COMPACTION FOR

DIGITAL SIGNAL PROCESSORS WITH IRREGULAR DATAPATHS

Werner Kreuzer and Bernhard Wess

Institut für Nachrichtentechnik und Hochfrequenztechnik

Technische Universität Wien, A-1040 Vienna, Austria

email: Werner.Kreuzer@tuwien.ac.at

ABSTRACT

We address the phase ordering problem of code compaction
and register assignment in a data �ow graph compiler. Dur-
ing register assignment, we take into account the instruction-
level parallelism available. Symbolic variables in straight-
line code are allocated to register set/memory location pairs
which maximally preserve the freedom available for code
compaction. Whenever necessary, spill code is inserted dur-
ing �nal register assignment and scheduled during code
compaction. Register assignment is performed taking into
account its impact on code compaction. This strategy re-
sults in �nal code of high quality.

1. INTRODUCTION

The increasing use of application-speci�c instruction set
processors, like digital signal processors (DSPs), and the
necessity to meet stringent cost constraints in digital sys-
tems design have caused new demands for code generation
techniques which are not yet accomplished e�ciently by tra-
ditional compiling techniques [1]. Usually, integrating the
processor core, program ROM and RAM, and an ASIC cir-
cuitry on a single IC results in a severe limitation of program
ROM size. Therefore, there is an urgent need for compil-
ers which generate most dense code obtainable with highest
performance. Unfortunately, high irregularities in the data
path of many DSP architectures make optimal utilization
of processor resources a highly complicated task.

In the course of generating assembly code for DSPs, so-
lutions for various highly interdependent and exponentially
complex problems have to be found, e.g., instruction se-
lection, scheduling, register allocation, register assignment,
and compaction. Solving these tasks simultaneously would
result in a computationally intractable optimization prob-
lem. On the other hand, achieving optimal or near-optimal
solutions for each subtask separately does not guarantee op-
timal or near-optimal �nal code. In this paper, we focus on
the integration of register assignment and code compaction
for a data �ow graph (DFG) compiler for DSPs with irregu-
lar datapaths. In the front end, DFGs are transformed into

This work was supported by the Fonds zur Förderung der

wissenschaftlichen Forschung under research grant P10701-ÖTE.

intermediate straight-line code. In this intermediate repre-
sentation, the results of instruction selection and schedul-
ing of ALU/MAC operations are speci�ed. Additionally,
intermediate results which can reside in result or feedback
registers are assigned to minimize register-register transfers.

Our approach to the phase ordering problem of regis-
ter assignment and code compaction is to handle them in
two separate phases, but to make register allocation sen-
sitive to its impact on subsequent code compaction. This
organization of the individual phases has the following ad-
vantages: (1) By keeping separate phases, the complexities
of attempting to perform register assignment and code com-
paction simultaneously are avoided. (2) By applying code
compaction after register assignment, spill code inserted
during register assignment will be carefully scheduled. Al-
though the compaction and register assignment algorithms
have to be based on heuristics to solve these NP-hard prob-
lems in a reasonable amount of time, pursuing the proposed
strategy results in assembly code of high quality.

In the remainder of this paper we describe our regis-
ter assignment algorithm (Section 2) and we give a brief
overview of the implemented compaction algorithm (Sec-
tion 3). Section 4 provides experimental results for the
Analog Devices ADSP-21xx general purpose DSP family.
Section 5 gives a summary.

2. REGISTER ASSIGNMENT

Register assignment in code generation is the procedure of
�nding the best use of a �xed set of registers under hardware
constraints; i.e., it attempts to map the registers such that
the number of memory references is minimized. Register
assignment is classi�ed under the NP-complete problems
[2] and can be considered as a graph-coloring problem [3].

Since this technique and its improvements [4, 5] were
originally developed for global optimization for architec-
tures with regular register �les, they do not directly address
dedicated architectures with special purpose registers. DSP
architectures may have irregular datapaths and therefore
new approaches are required considering the heavy inter-
dependence between code compaction and register assign-
ment.



2.1. Register Sets, Register Set Allocation

Considering architectures with irregular datapaths, in a
conventional approach, allocating registers has to include
the selection of a valid register for each appearance of a
variable in the straight-line code. Therefore, register al-
location not only has to decide which variables can reside
in a register but also has to select a speci�c register for
each variable. Thus, register allocation and assignment are
performed actually in one step. To put it optimistically, in-
tegration of register allocation and assignment may result
in better overall performance of code generation. However,
the potential improvement is more or less compensated by
the di�culty of solving both problems simultaneously. In
[6], a graph labeling method which applies simulated an-
nealing for memory bank and register assignment is pro-
posed. This method results in high compilation time even
for medium-sized programs.

To avoid the increased computational complexity caused
by the enlarged solution space, we employ register set allo-

cation. Register sets contain all registers which can be used
equivalently in an instruction. Register set allocation means
to select the best �tting register set for a symbolic variable
under the assumption that it can reside in a register. The
decision either in which speci�c register of that set a vari-
able will reside or if it has to be spilled to memory, is made
during �nal assignment. The concept of register sets for
DSP code generation is not new [7]. However, we approach
register assignment not as an separate problem. In contrast
to [7], we allocate symbolic variables to register sets taking
into account potential instruction-level parallelism.

1: AR = y27.1 + y25

2: MR = AR * c4

3: y22 = MR + y25

:

11: MR = y12 * c2

12: AR = y23 + y12

:

26: AR = AF - AR

27: y26 = AR

28: AR = AR + y28

29: y29 = AR

30: AR = y19 + y14

31: y21 = AR

32: AR = AR + y15

33: y = AR

34: AR = y17 + y9

35: y16 = AR

Figure 1: Intermediate straight-line code for a 2
nd order

WDF �lter and the ADSP-21xx family.

Figure 1 shows a segment of intermediate straight-line
code for a 2

nd order WDF �lter. The target architec-
ture is the Analog Devices ADSP-21xx family. As can be
seen, register assignment is speci�ed only for result (AR,
MR) and feedback (AF) registers. Any operand which has to
be loaded from memory is still labeled by a symbolic vari-
able. Additionally, results which have to be written to mem-
ory are speci�ed: inputs for delay elements (y26,y29,y21,y16)

and the �lter output (y).
Register set allocation starts with the �rst unassigned

symbolic variable used as an operand for an ALU/MAC op-
eration in the straight-line code. If there are no user-de�ned
limitations for the selection of an appropriate register set,
that register set is chosen which o�ers the highest degree
of potential instruction-level parallelism. For example, the
ADSP-21xx can execute two load instructions concurrently
and also concurrently with an ALU/MAC operation if some
resource constraints are met1. If these constraints are vi-
olated, only one load instruction can be executed concur-
rently with an ALU/MAC operation. In a �rst step, for
symbolic variables which are only used once in a basic block,
register sets are allocated to meet register constraints for
the highest degree of instruction-level parallelism (c4 in in-
struction 2 will be allocated to register set MY and memory
bank PM; conf. Fig 3).

For symbolic variables which are used more than once,
lifespan and reusage properties are exploited. Our approach
is similar to [8] where a probabilistic method is used to ex-
ploit lifespan and number of reuse to allocate registers for
register �le architectures. For DSPs with irregular data-
paths, however, we also have to consider each instruction
where a symbolic variable is used. A usage in instructions
which do not have operand registers in common causes a
natural split of lifespan. Irrespective of free registers dur-
ing the original lifespan, this symbolic variable has to be
allocated to two di�erent register sets (y12 in instructions
11 and 12 will be allocated to register sets MX and AY, re-
spectively; conf. Fig 3).

If a symbolic variable is used in instructions which share
an operand register set but the variable is not speci�ed as
the same operand type (X/Y-operand) in each instruction,
swapping operands in some of these instructions may en-
able the variable to reside in a register. However, swapping
operands can be prohibited by resource constraints, e.g., re-
sult registers can only serve as X-operands whereas feedback
registers can only serve as Y-operands. Thus, for symbolic
variables which are used together with result or feedback
registers, operand types cannot be changed (Fig. 2). This
may result in additional load instructions.

AR = x1 + x2 AR = x1 + AF

: :

AR = x3 + x1 AR = AR + x1

(a) (b)

Figure 2: Reused operands; (a) operands x1 and x3 can be
swapped, (b) swapping of operands is prohibited

Considering these constraints, symbolic variables are al-
located to that register set/memory pair which o�ers the
highest degree of potential instruction-level parallelism. This
strategy is pursued also for variables with a single appear-
ance in an operation with only one symbolic variable unas-
signed.

1Only certain register set/memory bank combinations are al-

lowed for parallel execution.



2.2. Final Assignment

During register set allocation, a set of equivalent registers
which meet the constraints imposed by the corresponding
ALU/MAC operation is selected for each symbolic variable.
The decision whether variables can reside in one of these
registers is made during �nal assignment. Since these reg-
ister sets are homogeneous subsets of a non-homogeneous
register set, the previously mentioned techniques for op-
timization for architectures with regular register �les can
be applied. Due to the limited number of equivalent reg-
isters (for the ADSP-21xx, each register set contains just
two registers), even optimal algorithms can be performed
in a reasonable amount of time. Variables which cannot
reside in registers are spilled to memory. The additionally
inserted memory accesses are scheduled during code com-
paction. Fig. 3 shows a segment of intermediate straight-
line code after register assignment and spill code insertion.

AX0 = DM(y27.1)

AY0 = PM(y25)

1: AR = AX0 + AY0

PM(y28) = AR

MY0 = PM(c4)

2: MR = AR * MY0

DM(y23) = MR

3: y22 = MR + AY0

:

MX1 = PM(y12)

MY1 = PM(c2)

11: MR = MX1 * MY1

AX0 = DM(y23)

AY1 = PM(y12)

12: AR = AX0 + AY1

:

AY1 = PM(y28)

28: AR = AR + AY1

29: DM(y29) = AR

AX1 = DM(y19)

AY0 = PM(y14)

30: AR = AX1 + AY0

31: DM(y21) = AR

AY0 = PM(y15)

32: AR = AR + AY0

:

Figure 3: Intermediate straight-line code for a 2
nd order

WDF �lter and the ADSP-21xx family; registers assigned
and spill code inserted.

3. CODE COMPACTION

DSPs are similar to horizontally microcoded machines in
that multiple functional and data addressing units can be
controlled in a long instruction word. This allows microcode
compaction techniques to be applied to straight-line inter-
mediate code to exploit instruction-level parallelism of the
target machine. We consider branch-free blocks of code, i.e.
blocks of code with a single entry and a single exit point.
Therefore, local compaction techniques can be applied to

exploit the instruction-level parallelism of the target archi-
tecture. Despite local compaction is an exponentially com-
plex problem, optimal or near-optimal results can be found
in a reasonable amount of time [9].

Our compaction algorithm is based on the critical path
algorithm [10]. Compaction starts with a data dependency
analysis which is based on an examination of the data in-
teractions between input and output resources for each op-
eration in the straight-line code. Direct data interactions
between operations oi and oj occur in one of the following
cases (We assume that oi precedes oj in the straight-line
code.):

� An output resource of oi is also an input resource
of oj . If the order of the operations is reversed, the
input resource of oj does contain an outdated value.

� An input resource of oi is also an output resource of
oj . In this case, a reversed order causes an update of
the input resource of oi before it has been used.

These direct data interactions restrict the potential re-
ordering performed to exploit the compaction capability of
the target system. Shifting an operand beyond the limit
caused by such a restriction causes a data con�ict. Re-
source con�ict analysis on the other hand determines which
instructions can be executed concurrently without con�ict-
ing over a hardware resource. These con�icts are caused by
restrictions imposed by the target architecture. Therefore,
a compaction algorithm must operate within the framework
of a machine model. To specify all concurrently executable
instructions and corresponding resource constraints, we use
a target architecture description �le as proposed in [11].

The results of data dependency analysis and resource
con�ict analysis provide the information required to com-
pact operations into multifunction instructions. Therefore,
an algorithm for forming complete multifunction instruc-
tions examines a set of operations of the straight-line code
and constructs con�ict-free operation bundles. An opera-
tion bundle is a set of operations which are desired to be
executed together in one instruction cycle. An operation
bundle is considered as a complete multifunction instruc-
tion with respect to a set of operations if no other members
of the set can be added to the bundle without violating data
dependency or resource constraints. Figure 4 shows a seg-
ment of intermediate code after register and memory bank
assignment, spill code insertion, and code compaction.

4. RESULTS

As a test set, we generated assembly code for Analog De-
vices' ADSP-21xx for four di�erent digital �lter structures.
Table 1 summarizes the number of ALU and MAC opera-
tions for each �lter, the size of hand-coded and thoroughly
optimized code, and the size of automatically generated
code. In [12], we examined the impact of register assign-
ment on code compaction if both processes are performed
independently. That approach resulted in large code size
variations for di�erent register assignments (up to 62%)



AX0 = DM(y27.1), AY0 = PM(y25);

AR = AX0 + AY0, AX1 = DM(y23), MY0 = PM(c4);

PM(y28) = AR;

MR = AR * MY0, MX0 = DM(c1), MY1 = PM(y2);

DM(y23) = MR, AR = AX1 + AY0;

:

AR = AX1 + AY1, AX1 = DM(y19);

AY0 = PM(y14);

AR = AX1 + AY0, AX1 = DM(y21), AY0 = PM(y15);

DM(y21) = AR;

AR = AX1 + AY0, AX1 = PM(y17);

AY0 = DM(y9);

:

Figure 4: Segment of intermediate code for ADSP-21xx af-
ter register assignment, spill code insertion, and code com-
paction.

and the necessity to consider all assignments for code com-
paction to achieve optimal �nal code if backtracking is not
applied.

Filter a b c d

2
nd order norm. ladder 13 � 16 17 17-25

2
nd order lattice 11 � 16 18 18-19

2
nd order state space 9 � 13 13 13-21

4
th order WDF 20 � 32 34 34-38

a : : : Number of ALU/MAC operations

b : : : Program size of hand-coded code

c : : : Program size of automatically generated code

d : : : Code size variation discovered in [12]

Table 1: Compilation results for Analog Devices' ADSP-
21xx.

By coupling register assignment and code compaction
as proposed in this paper, we circumvent the problem of
generating all assignments possible; neither do we have to
apply backtracking. Nevertheless, code generation based
on our new method results in �nal code of the same quality
as by exploiting all possible assignments without increas-
ing computational complexity. Additionally, we compared
our results with hand coded and thoroughly optimized pro-
grams to see if near-optimal solutions can be achieved. Al-
though our register assignment and compaction algorithms
are based on heuristics to solve these NP-hard problems,
assembly code of high quality is achieved.

5. SUMMARY

In this paper, we presented a method for register assign-
ment and code compaction for DSPs with irregular dat-
apaths. Register assignment, which is made sensitive to
its impact on code compaction, is performed in two steps.
For the �rst step, we utilize the concept of register sets to
group equivalent registers. During register set allocation,
that register set is chosen which meets the resource con-

straints imposed by the corresponding ALU/MAC opera-
tion and which maximally preserves the freedom available
for code compaction. Together with allocation of register
sets, memory locations for variables are selected to maxi-
mize potential instruction-level parallelism. In the sequel,
symbolic variables are assigned to registers contained in the
previously allocated register sets. For variables which can-
not reside in registers due to the limited number of registers
in each set, spill code is inserted. Thus, scheduling of the
spill code can be performed e�ciently during code com-
paction. For code compaction, we utilize the critical path
algorithm which provides optimal or near-optimal results in
a reasonable amount of time. As our results show, the size
of the automatically generated programs is about the same
size as for hand-coded and thoroughly optimized programs.

6. REFERENCES

[1] V. Zivojnovic, S. Ritz, and H. Meyr, �Retiming of DSP
programs for optimum vectorization�, in Proceedings
of the IEEE ICASSP'94, 1994, vol. 2, pp. 465�468.

[2] R. Sethi, �Complete register allocation problems�,
SIAM J. Computing, vol. 4, no. 3, pp. 226�248,
September 1975.

[3] G. J. Chaitin, �Register allocation & spilling via graph
coloring�, ACM SIGPLAN Notices, vol. 17, no. 6, pp.
98�105, 1982.

[4] F. C. Chow and J. L. Hennessy, �The priority-based
coloring approach to register allocation�, ACM Trans-
actions on Programming Languages and Systems, vol.
12, no. 4, pp. 501�536, January 1990.

[5] Preston Briggs, Keith D. Cooper, and Linda Torczon,
�Improvements to graph coloring register allocation�,
ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 16, no. 3, pp. 428�455, May
1994.

[6] A. Sudarsanam and S. Malik, �Memory bank and regis-
ter allocation in software synthesis for ASIPs�, in Pro-
ceedings of the ICCAD'95, San Jose, November 1995.

[7] C. Liem, T. May, and P. Paulin, �Register assignment
through resource classi�cation for ASIP microcode
generation�, in Proccedings of ICCAD'94, San Jose,
CA, Nov. 6-10 1994.

[8] T. A. Proebsting, Code generation techniques, PhD
thesis, University of Wisconsin - Madison, 1992.

[9] D. Landskov, S. Davidson, B. Shriver, and P. W.
Mallett, �Local microcode compaction techniques�,
ACM Computing Surveys, vol. 12, no. 3, pp. 261�294,
September 1980.

[10] C. V. Ramamoorthy and M. Tsuchiya, �A high-level
language for horizontal microprogramming�, IEEE
Transactions on Computers, vol. C-23, no. 8, pp. 791�
801, August 1974.

[11] W. Kreuzer, M. Gotschlich, and B. Wess, �A retar-
getable optimizing code generator for digital signal
processors�, in Proceedings of the IEEE ISCAS'96, At-
lanta, May 1996, vol. 2, pp. 257�260.

[12] W. Kreuzer and B. Wess, �Optimized code compaction
for digital signal processors�, in Proceedings of the IC-
SPAT'95, Boston, October 1995, vol. 2, pp. 1753�1757.


