COOPERATIVE REGISTER ASSIGNMENT AND CODE COMPACTION FOR
DIGITAL SIGNAL PROCESSORS WITH IRREGULAR DATAPATHS

Werner Kreuzer and Bernhard Wess

Institut fiir Nachrichtentechnik und Hochfrequenztechnik
Technische Universitdt Wien, A-1040 Vienna, Austria
email: Werner.Kreuzer@tuwien.ac.at

ABSTRACT

We address the phase ordering problem of code compaction
and register assignment in a data flow graph compiler. Dur-
ing register assignment, we take into account the instruction-
level parallelism available. Symbolic variables in straight-
line code are allocated to register set/memory location pairs
which maximally preserve the freedom available for code
compaction. Whenever necessary, spill code is inserted dur-
ing final register assignment and scheduled during code
compaction. Register assignment is performed taking into
account its impact on code compaction. This strategy re-
sults in final code of high quality.

1. INTRODUCTION

The increasing use of application-specific instruction set
processors, like digital signal processors (DSPs), and the
necessity to meet stringent cost constraints in digital sys-
tems design have caused new demands for code generation
techniques which are not yet accomplished efficiently by tra-
ditional compiling techniques [1]. Usually, integrating the
processor core, program ROM and RAM, and an ASIC cir-
cuitry on a single IC results in a severe limitation of program
ROM size. Therefore, there is an urgent need for compil-
ers which generate most dense code obtainable with highest
performance. Unfortunately, high irregularities in the data
path of many DSP architectures make optimal utilization
of processor resources a highly complicated task.

In the course of generating assembly code for DSPs, so-
lutions for various highly interdependent and exponentially
complex problems have to be found, e.g., instruction se-
lection, scheduling, register allocation, register assignment,
and compaction. Solving these tasks simultaneously would
result in a computationally intractable optimization prob-
lem. On the other hand, achieving optimal or near-optimal
solutions for each subtask separately does not guarantee op-
timal or near-optimal final code. In this paper, we focus on
the integration of register assignment and code compaction
for a data flow graph (DFG) compiler for DSPs with irregu-
lar datapaths. In the front end, DFGs are transformed into

This work was supported by the Fonds zur Férderung der
wissenschaftlichen Forschung under research grant P10701-OTE.

intermediate straight-line code. In this intermediate repre-
sentation, the results of instruction selection and schedul-
ing of ALU/MAC operations are specified. Additionally,
intermediate results which can reside in result or feedback
registers are assigned to minimize register-register transfers.

Our approach to the phase ordering problem of regis-
ter assignment and code compaction is to handle them in
two separate phases, but to make register allocation sen-
sitive to its impact on subsequent code compaction. This
organization of the individual phases has the following ad-
vantages: (1) By keeping separate phases, the complexities
of attempting to perform register assignment and code com-
paction simultaneously are avoided. (2) By applying code
compaction after register assignment, spill code inserted
during register assignment will be carefully scheduled. Al-
though the compaction and register assignment algorithms
have to be based on heuristics to solve these NP-hard prob-
lems in a reasonable amount of time, pursuing the proposed
strategy results in assembly code of high quality.

In the remainder of this paper we describe our regis-
ter assignment algorithm (Section 2) and we give a brief
overview of the implemented compaction algorithm (Sec-
tion 3). Section 4 provides experimental results for the
Analog Devices ADSP-21xx general purpose DSP family.
Section 5 gives a summary.

2. REGISTER ASSIGNMENT

Register assignment in code generation is the procedure of
finding the best use of a fixed set of registers under hardware
constraints; i.e., it attempts to map the registers such that
the number of memory references is minimized. Register
assignment is classified under the NP-complete problems
[2] and can be considered as a graph-coloring problem [3].

Since this technique and its improvements [4, 5] were
originally developed for global optimization for architec-
tures with regular register files, they do not directly address
dedicated architectures with special purpose registers. DSP
architectures may have irregular datapaths and therefore
new approaches are required considering the heavy inter-
dependence between code compaction and register assign-
ment.

2.1. Register Sets, Register Set Allocation

Considering architectures with irregular datapaths, in a
conventional approach, allocating registers has to include
the selection of a valid register for each appearance of a
variable in the straight-line code. Therefore, register al-
location not only has to decide which variables can reside
in a register but also has to select a specific register for
each variable. Thus, register allocation and assignment are
performed actually in one step. To put it optimistically, in-
tegration of register allocation and assignment may result
in better overall performance of code generation. However,
the potential improvement is more or less compensated by
the difficulty of solving both problems simultaneously. In
[6], a graph labeling method which applies simulated an-
nealing for memory bank and register assignment is pro-
posed. This method results in high compilation time even
for medium-sized programs.

To avoid the increased computational complexity caused
by the enlarged solution space, we employ register set allo-
cation. Register sets contain all registers which can be used
equivalently in an instruction. Register set allocation means
to select the best fitting register set for a symbolic variable
under the assumption that it can reside in a register. The
decision either in which specific register of that set a vari-
able will reside or if it has to be spilled to memory, is made
during final assignment. The concept of register sets for
DSP code generation is not new [7]. However, we approach
register assighment not as an separate problem. In contrast
to [7], we allocate symbolic variables to register sets taking
into account potential instruction-level parallelism.

1: AR = y27.1 + y256
2: MR = AR * c4
3: y22 = MR + y25

11: MR = y12 * c2
12: AR = y23 + yl12

26: AR = AF - AR

27: y26 = AR

28: AR = AR + y28

29: y29 = AR

30: AR = yi19 + yl14
31: y21 = AR

32: AR = AR + yi15b

33:' y = AR

34: AR = y17 + y9

35: y16 = AR

Figure 1: Intermediate straight-line code for a 2" order
WDF filter and the ADSP-21xx family.

Figure 1 shows a segment of intermediate straight-line
code for a 2" order WDF filter. The target architec-
ture is the Analog Devices ADSP-21xx family. As can be
seen, register assignment is specified only for result (AR,
MR) and feedback (AF) registers. Any operand which has to
be loaded from memory is still labeled by a symbolic vari-
able. Additionally, results which have to be written to mem-
ory are specified: inputs for delay elements (y26,y29,y21,y16)

and the filter output (y).

Register set allocation starts with the first unassigned
symbolic variable used as an operand for an ALU/MAC op-
eration in the straight-line code. If there are no user-defined
limitations for the selection of an appropriate register set,
that register set is chosen which offers the highest degree
of potential instruction-level parallelism. For example, the
ADSP-21xx can execute two load instructions concurrently
and also concurrently with an ALU/MAC operation if some
resource constraints are met!. If these constraints are vi-
olated, only one load instruction can be executed concur-
rently with an ALU/MAC operation. In a first step, for
symbolic variables which are only used once in a basic block,
register sets are allocated to meet register constraints for
the highest degree of instruction-level parallelism (c4 in in-
struction 2 will be allocated to register set MY and memory
bank PM; conf. Fig 3).

For symbolic variables which are used more than once,
lifespan and reusage properties are exploited. Our approach
is similar to [8] where a probabilistic method is used to ex-
ploit lifespan and number of reuse to allocate registers for
register file architectures. For DSPs with irregular data-
paths, however, we also have to consider each instruction
where a symbolic variable is used. A usage in instructions
which do not have operand registers in common causes a
natural split of lifespan. Irrespective of free registers dur-
ing the original lifespan, this symbolic variable has to be
allocated to two different register sets (y12 in instructions
11 and 12 will be allocated to register sets MX and AY, re-
spectively; conf. Fig 3).

If a symbolic variable is used in instructions which share
an operand register set but the variable is not specified as
the same operand type (X/Y-operand) in each instruction,
swapping operands in some of these instructions may en-
able the variable to reside in a register. However, swapping
operands can be prohibited by resource constraints, e.g., re-
sult registers can only serve as X-operands whereas feedback
registers can only serve as Y-operands. Thus, for symbolic
variables which are used together with result or feedback
registers, operand types cannot be changed (Fig. 2). This
may result in additional load instructions.

AR = x1 + x2 AR = x1 + AF
AR = x3 + x1 AR = AR + x1
(a) (b)

Figure 2: Reused operands; (a) operands x1 and x3 can be
swapped, (b) swapping of operands is prohibited

Considering these constraints, symbolic variables are al-
located to that register set/memory pair which offers the
highest degree of potential instruction-level parallelism. This
strategy is pursued also for variables with a single appear-
ance in an operation with only one symbolic variable unas-
signed.

LOnly certain register set/memory bank combinations are al-
lowed for parallel execution.

2.2. Final Assignment

During register set allocation, a set of equivalent registers
which meet the constraints imposed by the corresponding
ALU/MAC operation is selected for each symbolic variable.
The decision whether variables can reside in one of these
registers is made during final assignment. Since these reg-
ister sets are homogeneous subsets of a non-homogeneous
register set, the previously mentioned techniques for op-
timization for architectures with regular register files can
be applied. Due to the limited number of equivalent reg-
isters (for the ADSP-21xx, each register set contains just
two registers), even optimal algorithms can be performed
in a reasonable amount of time. Variables which cannot
reside in registers are spilled to memory. The additionally
inserted memory accesses are scheduled during code com-
paction. Fig. 3 shows a segment of intermediate straight-
line code after register assignment and spill code insertion.

AX0 = DM(y27.1)
AYO = PM(y25)
1: AR = AXO + AYO
PM(y28) = AR
MYO = PM(c4)
2: MR = AR * MYO
DM(y23) = MR

3: y22 = MR + AYO

MX1 = PM(y12)
MY1 = PM(c2)
11: MR = MX1 * MY1
AX0 = DM(y23)
AY1 = PM(y12)
12: AR = AXO + AY1

AY1 = PM(y28)
28: AR = AR + AY1
29: DM(y29) = AR
AX1 = DM(y19)
AYO = PM(y14)
30: AR = AX1 + AYO
31: DM(y21) = AR
AYO = PM(y15)
32: AR = AR + AYO

Figure 3: Intermediate straight-line code for a 2"? order
WDF filter and the ADSP-21xx family; registers assigned
and spill code inserted.

3. CODE COMPACTION

DSPs are similar to horizontally microcoded machines in
that multiple functional and data addressing units can be
controlled in a long instruction word. This allows microcode
compaction techniques to be applied to straight-line inter-
mediate code to exploit instruction-level parallelism of the
target machine. We consider branch-free blocks of code, i.e.
blocks of code with a single entry and a single exit point.
Therefore, local compaction techniques can be applied to

exploit the instruction-level parallelism of the target archi-
tecture. Despite local compaction is an exponentially com-
plex problem, optimal or near-optimal results can be found
in a reasonable amount of time [9].

Our compaction algorithm is based on the critical path
algorithm [10]. Compaction starts with a data dependency
analysis which is based on an examination of the data in-
teractions between input and output resources for each op-
eration in the straight-line code. Direct data interactions
between operations o; and o; occur in one of the following
cases (We assume that o; precedes o; in the straight-line
code.):

e An output resource of o; is also an input resource
of oj. If the order of the operations is reversed, the
input resource of o; does contain an outdated value.

e An input resource of o; is also an output resource of
0;. In this case, a reversed order causes an update of
the input resource of o; before it has been used.

These direct data interactions restrict the potential re-
ordering performed to exploit the compaction capability of
the target system. Shifting an operand beyond the limit
caused by such a restriction causes a data conflict. Re-
source conflict analysis on the other hand determines which
instructions can be executed concurrently without conflict-
ing over a hardware resource. These conflicts are caused by
restrictions imposed by the target architecture. Therefore,
a compaction algorithm must operate within the framework
of a machine model. To specify all concurrently executable
instructions and corresponding resource constraints, we use
a target architecture description file as proposed in [11].

The results of data dependency analysis and resource
conflict analysis provide the information required to com-
pact operations into multifunction instructions. Therefore,
an algorithm for forming complete multifunction instruc-
tions examines a set of operations of the straight-line code
and constructs conflict-free operation bundles. An opera-
tion bundle is a set of operations which are desired to be
executed together in one instruction cycle. An operation
bundle is considered as a complete multifunction instruc-
tion with respect to a set of operations if no other members
of the set can be added to the bundle without violating data
dependency or resource constraints. Figure 4 shows a seg-
ment of intermediate code after register and memory bank
assignment, spill code insertion, and code compaction.

4. RESULTS

As a test set, we generated assembly code for Analog De-
vices’ ADSP-21xx for four different digital filter structures.
Table 1 summarizes the number of ALU and MAC opera-
tions for each filter, the size of hand-coded and thoroughly
optimized code, and the size of automatically generated
code. In [12], we examined the impact of register assign-
ment on code compaction if both processes are performed
independently. That approach resulted in large code size
variations for different register assignments (up to 62%)

AXO = DM(y27.1), AYO = PM(y25);

AR = AXO + AYO, AX1 = DM(y23), MYO = PM(c4);
PM(y28) = AR;

MR = AR * MYO, MXO = DM(cl), MYl = PM(y2);
DM(y23) = MR, AR = AX1 + AYO;

AR = AX1 + AY1, AX1 = DM(y19);

AYO = PM(y14);
AR = AX1 + AYO, AX1
DM(y21) = AR;
AR = AX1 + AYO, AX1
AYO = DM(y9);

DM(y21), AYO = PM(y15);

PM(y17);

Figure 4: Segment of intermediate code for ADSP-21xx af-
ter register assignment, spill code insertion, and code com-
paction.

and the necessity to consider all assignments for code com-
paction to achieve optimal final code if backtracking is not
applied.

Filter ‘ a ‘ b | c | d ‘
274 order norm. ladder | 13 | <16 | 17 | 17-25
274 order lattice 11 | <16 | 18 | 1819
2n4 order state space 9 | <13 | 13 | 13-21
4th order WDF 20 | <32 | 34 | 34-38
a ... Number of ALU/MAC operations

b ... Program size of hand-coded code

¢ ... Program size of automatically generated code
d ... Code size variation discovered in [12]

Table 1: Compilation results for Analog Devices’ ADSP-
21xx.

By coupling register assignment and code compaction
as proposed in this paper, we circumvent the problem of
generating all assignments possible; neither do we have to
apply backtracking. Nevertheless, code generation based
on our new method results in final code of the same quality
as by exploiting all possible assignments without increas-
ing computational complexity. Additionally, we compared
our results with hand coded and thoroughly optimized pro-
grams to see if near-optimal solutions can be achieved. Al-
though our register assignment and compaction algorithms
are based on heuristics to solve these NP-hard problems,
assembly code of high quality is achieved.

5. SUMMARY

In this paper, we presented a method for register assign-
ment and code compaction for DSPs with irregular dat-
apaths. Register assignment, which is made sensitive to
its impact on code compaction, is performed in two steps.
For the first step, we utilize the concept of register sets to
group equivalent registers. During register set allocation,
that register set is chosen which meets the resource con-

straints imposed by the corresponding ALU/MAC opera-
tion and which maximally preserves the freedom available
for code compaction. Together with allocation of register
sets, memory locations for variables are selected to maxi-
mize potential instruction-level parallelism. In the sequel,
symbolic variables are assigned to registers contained in the
previously allocated register sets. For variables which can-
not reside in registers due to the limited number of registers
in each set, spill code is inserted. Thus, scheduling of the
spill code can be performed efficiently during code com-
paction. For code compaction, we utilize the critical path
algorithm which provides optimal or near-optimal results in
a reasonable amount of time. As our results show, the size
of the automatically generated programs is about the same
size as for hand-coded and thoroughly optimized programs.

6. REFERENCES

[1] V. Zivojnovic, S. Ritz, and H. Meyr, “Retiming of DSP
programs for optimum vectorization”, in Proceedings
of the IEEE ICASSP’94, 1994, vol. 2, pp. 465-468.

[2] R. Sethi, “Complete register allocation problems”,
SIAM J. Computing, vol. 4, no. 3, pp. 226—248,
September 1975.

[3] G.J. Chaitin, “Register allocation & spilling via graph
coloring”, ACM SIGPLAN Notices, vol. 17, no. 6, pp.
98-105, 1982.

[4] F. C. Chow and J. L. Hennessy, “The priority-based
coloring approach to register allocation”, ACM Trans-
actions on Programming Languages and Systems, vol.
12, no. 4, pp. 501-536, January 1990.

[6] Preston Briggs, Keith D. Cooper, and Linda Torczon,
“Improvements to graph coloring register allocation”,
ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 16, no. 3, pp. 428-455, May
1994.

[6] A.Sudarsanam and S. Malik, “Memory bank and regis-
ter allocation in software synthesis for ASIPs”, in Pro-
ceedings of the ICCAD’95, San Jose, November 1995.

[7] C. Liem, T. May, and P. Paulin, “Register assignment
through resource classification for ASIP microcode
generation”, in Proccedings of ICCAD’94, San Jose,
CA, Nov. 6-10 1994.

[8] T. A. Proebsting, Code generation techniques, PhD
thesis, University of Wisconsin - Madison, 1992.

[9] D. Landskov, S. Davidson, B. Shriver, and P. W.
Mallett, “Local microcode compaction techniques”,
ACM Computing Surveys, vol. 12, no. 3, pp. 261-294,
September 1980.

[10] C. V. Ramamoorthy and M. Tsuchiya, “A high-level
language for horizontal microprogramming”, I[EFEE
Transactions on Computers, vol. C-23, no. 8, pp. 791—
801, August 1974.

[11] W. Kreuzer, M. Gotschlich, and B. Wess, “A retar-
getable optimizing code generator for digital signal
processors”, in Proceedings of the IEEE ISCAS’96, At-
lanta, May 1996, vol. 2, pp. 257-260.

[12] W. Kreuzer and B. Wess, “Optimized code compaction

for digital signal processors”, in Proceedings of the IC-
SPAT’95, Boston, October 1995, vol. 2, pp. 1753-1757.

