
OPTIMIZATION OF EMBEDDED DSP PROGRAMS USING POST-PASS

DATA-FLOW ANALYSIS

Ashok Sudarsanam1 Sharad Malik1 Steven Tjiang2 Stan Liao2

1Department of Electrical Engineering, Princeton University, Princeton, New Jersey, USA
2Advanced Technology Group, Synopsys Inc., Mountain View, California, USA

ABSTRACT

We investigate the problem of code generation for DSP
systems on a chip. Such systems devote a limited quantity
of silicon to program ROM, so application software must
be maximally dense. Additionally, the software must be
written so as to meet various high-performance constraints,
which may include hard real-time constraints. Unfortu-
nately, current compiler technology is unable to generate
dense, high-performance code for DSPs, whose architec-
tures are highly irregular. Consequently, designers often
resort to programming application software in assembly { a
time-consuming, error-prone, and non-portable task. Thus,
DSP compiler technology must be improved substantially.
We describe some optimizations that signi�cantly improve
the quality of compiler-generated code. Our optimizations
are applied globally and even across procedure calls. Ad-
ditionally, they are applied to the machine-dependent as-
sembly representation of the source program. Our target
architecture is the Texas Instruments' TMS320C25 DSP.

1. INTRODUCTION

It is a well-known fact that the quality of compiled code for
embedded DSP systems is extremely unsatisfactory, with
respect to density and performance [5]. Consequently, most
application software for such systems is hand-written { a
very time-consuming, error-prone, and non-portable task.
In order to increase developer productivity, DSP compiler
technology must be improved substantially.

The overall goal of our research is to develop a retar-
getableDSP compiler that generates su�ciently dense, high-
performance code, hence obviating the need for assembly
programming. Our current objective is to identify all op-
timizations necessary to generate high-quality code for a
single architecture { our target is the Texas Instruments'
TMS320C25 DSP [4], a representative of Texas Instru-
ments' popular �xed-point DSP family. In this paper, we
describe some of these optimizations.

Our optimizations are applied globally and inter-
procedurally and thus, further improve the quality of locally-
optimized code. Additionally, our optimizations occur at
the post-pass level { they are applied to the machine-
dependent assembly representation of the source program,
rather than the machine-independent intermediate repre-
sentation. It is well-understood that post-pass optimiza-
tions which exploit the irregular features of DSP architec-

tures are essential for generating code of the highest quality.

This paper is organized as follows: Section 2 gives an
overview of the TMS320C25 architecture. Section 3 de-
scribes our optimizations. Section 4 provides experimental
results, and �nally, Section 5 presents our conclusions.

2. TMS320C25 ARCHITECTURAL

OVERVIEW

We �rst describe the organization of the TMS320C25mem-
ory subsystem, since it motivates the need for global and
inter-procedural post-pass optimizations. The TMS320C25
does not penalize the use of the absolute addressing mode.
Consequently, for each procedure that is not involved in re-
cursion, the compiler can statically allocate all automatic
variables (those local variables that become active on proce-
dure entry and inactive on procedure exit) and refer to them
by their absolute memory address. This eliminates instruc-
tions to set up stack frames and modify the frame pointer.
In contrast, architectures such as the Motorola 56000 incur
a penalty for each use of the absolute addressing mode {
an extra instruction word is required to hold the absolute
address. In these architectures, it is advantageous to allo-
cate the automatic variables on the stack frame and access
them indirectly through one or more address registers.

Main memory is divided into 512 pages, with each page
subdivided into 128 16-bit words. A 9-bit register DP is
dedicated to hold a single page number. When the value of
DP is concatenated with a 7-bit o�set that occurs in the in-
struction word, a 16-bit address is formed which represents
the absolute address of a word in memory. However, before
accessing main memory, one must ensure that DP contains
the correct page number. This is the purpose of the LDPK
instruction, which loads DP with a 9-bit constant.

Consider the instruction sequence of Figure 1 which adds
the contents of statically-allocated variable var to the ac-
cumulator. Assume that var has been allocated to memory
page two at o�set 100. The �rst instruction loads DP with
the number of the page containing var. The second instruc-
tion �rst forms the absolute address of var by concatenating
the value of DP with the o�set of var within page two. It
then adds the contents of this memory location to the ac-
cumulator. A basic block is de�ned to be a code sequence
in which control-
ow enters at the beginning and leaves
only at the end [1]. Observe that if two successive mem-
ory references in a basic block access variables allocated to
the same page and no procedure call occurs between these

LDPK var
ADD offset of var

DP 2

1

0

var

2

.

.

.

511

100

After first instruction:

After second instruction:

2 100
Absolute address

Figure 1. TMS320C25 paged memory example.

references, an LDPK instruction before the second refer-
ence becomes redundant. Thus, our objective is to take ad-
vantage of the static allocation capabilities o�ered by the
TMS320C25. However, our e�orts will be successful only if
the LDPK overhead resulting from static allocation is sig-
ni�cantly less than the instruction overhead resulting from
stack-based allocation. We will now describe how post-pass
optimizations may be used to reduce the LDPK overhead.

3. POST-PASS OPTIMIZATIONS

3.1. Reducing the LDPK Overhead with Post-pass

Data-
ow Analysis

Assembly code is traditionally generated on a per-basic
block basis. Lin [6] provides a simple post-pass algorithm
that removes redundant LDPK instructions within basic
blocks, assuming that an LDPK is generated for each ac-
cess of a statically-allocated variable. Alternatively, it is
possible to suppress generation of many redundant LDPKs
during code generation itself. Prior to code generation, it
is assumed that the value of DP is unknown. Before code
is generated to access a statically-allocated variable v, the
value ofDP is compared to the number of the page to which
v has been allocated. If these values are identical, then gen-
eration of an LDPK instruction is suppressed, otherwise
the value of DP is updated and an LDPK is generated. It
is also assumed that a procedure call destroys the value of
DP. Hence, for each basic block, an LDPK is generated
for the very �rst access of a statically-allocated variable and
for each access that is the �rst to follow a call.

By performing global post-pass data-
ow analysis [1] for
each procedure p, we can determine the value(s) that DP
assumes upon entry to each basic block of p. We may then
remove the very �rst LDPK instruction of each basic block
B (assuming it is not preceded by a procedure call) if and
only if the value of DP upon entry to B is equal to the
number of the corresponding page. In order to do this, we
must compute three values for each basic block B:

� IN(B): value of DP upon entry to B

� OUT(B): value of DP upon exit from B

� LAST(B): number of page last accessed in B

LAST(B) is computed by examining the assembly in-
structions of B in reverse order. We still assume that a
procedure call destroys the value of DP, so if a call is en-
countered before an LDPK in our traversal, LAST(B)
is assigned the constant UNKNOWN. If no LDPKs or
procedure calls are encountered, LAST(B) is assigned the
constant PROPAGATE. Otherwise, it is assigned an in-
teger corresponding to the page number referenced by the
LDPK. We then compute IN(B) and OUT(B) using the
equations of Figure 2 { in these equations, a null intersec-
tion is equivalent to a value of UNKNOWN. Once a so-
lution to these equations has been found, we may attempt
to remove the very �rst LDPK instruction of each basic
block as previously described. Note that due to the global
nature of these equations, IN(H) is assigned the value UN-
KNOWN, where H is the entry basic block of the current
procedure. This implies that the very �rst access in each
procedure of a statically-allocated variable will be preceded
by an LDPK. Additionally, an LDPK will still precede
each access that is the �rst to follow a procedure call.
By performing inter-procedural post-pass data-
ow anal-

ysis, we can determine the value(s) that DP assumes after
each procedure call, as well as upon entry to each proce-
dure. This information allows us to potentially remove a
subset of the remaining LDPK instructions. The former
can be derived by assigning DP the value of OUT(T) af-
ter each procedure call, where T is the exit basic block of
the called procedure. The latter can be computed, for each
procedure p, by examining the value of DP prior to each
procedure call to p in the program, and then taking the in-
tersection of these values. Note that DP is assumed to be
unknown before program execution begins. Thus, the very
�rst access in the program of a statically-allocated variable
will always be preceded by an LDPK.

U

while (OUT(B)’s have changed) {
 for each basic block B {

IN(B) =
p in predecessor(B)

OUT(p);

 if (LAST(B) == PROPAGATE)

 OUT(B) = IN(B);

 else OUT(B) = LAST(B);
 }

}

Figure 2. Global data-
ow analysis equations used

for LDPK and RSXM/SSXM removal.

3.2. Reducing the Data-Memory Overhead by

Coloring Automatic Variables

The primary disadvantage of statically allocating automatic
variables is that the run-time data-memory requirements
of the program increase considerably { statically-allocated

variables are assumed to exist for the entire duration of the
program and hence, may not be dynamically deallocated.
Reducing the data-memory overhead of the application soft-
ware is essential in the design of embedded systems.
By de�nition, automatic variables are required to exist

during the time period between procedure entry and proce-
dure exit. This allows us to perform a graph coloring of all
statically-allocated automatic variables (henceforth referred
to as eligible variables), such that identically-colored eligible
variables are allocated to the same data-memory location.
In the �rst step of the coloring process, live-variable analysis
[1] is performed on each procedure's eligible variables so as
to determine their live ranges. The live range of a variable
v speci�es those regions of the program where v is active.
We enforce liveness relationships among eligible variables of
di�erent procedures using the following heuristic: at each
call instruction s in procedure p, the live ranges of all eligi-
ble variables of p active at s are assumed to overlap with the
live ranges of all eligible variables of (i) the called procedure
c and (ii) those procedures directly and transitively called
by c. In the second step, an inter-procedural interference
graph is constructed in which a vertex exists for each eligi-
ble variable in the program, and edge e(i; j) exists if and
only if the live ranges of variables i and j overlap. This edge
speci�es that i and j must be colored di�erently, or anal-
ogously, they must be allocated to di�erent data-memory
locations. Otherwise, a de�nition of i will overwrite the
value of j, or vice versa, hence leading to incorrect code.
We now use a binary search to determine a small number

of colors that satis�es the graph-coloring constraints im-
posed by this interference graph (call it G). At each step of
the search, we apply Briggs' coloring heuristic [3] to G. Ex-
perimental results demonstrate that this optimization sig-
ni�cantly reduces the total quantity of data-memory con-
sumed by the program. Additionally, if the LDPK opti-
mization is applied after coloring, we �nd that we are able
to further reduce the LDPK overhead { since fewer pages
of memory are consumed, DP now assumes fewer values.

3.3. Reducing the RSXM/SSXM Overhead with

Post-pass Data-
ow Analysis

The post-pass data-
ow analysis techniques of Section 3.1
may be used to eliminate other redundant assembly instruc-
tions. The TMS320C25 permits the programmer to set and
reset the sign-extension (s-e) mode using the SSXM and
RSXM instructions, respectively. The former instruction
causes future accumulator loads to be automatically sign-
extended, while the latter suppresses sign-extension. Let us
rede�ne IN(B),OUT(B), and LAST(B) for each block B:

� IN(B): value of s-e mode upon entry to B

� OUT(B): value of s-e mode upon exit from B

� LAST(B): last value of s-e mode in B

LAST(B) is again computed by examining the assem-
bly instructions of B in reverse order: if a procedure call is
encountered before an RSXM/SSXM instruction in our
traversal, LAST(B) is assigned the value UNKNOWN.
If noRSXM/SSXM instructions or procedure calls are en-
countered in the traversal, LAST(B) is assigned the con-
stant PROPAGATE. Otherwise, it is assigned the con-

stant RESET or SET depending on whether an RSXM
or SSXM, respectively, was encountered �rst.
Using the equations of Figure 2, we now compute IN(B)

and OUT(B) for each basic block B. Assume that the �rst
sign-extension-mode-related instruction i in block B is not
preceded by a procedure call. Then if i is equivalent to an
RSXM (SSXM) instruction, we may safely remove it if
and only if IN(B) has a value of RESET (SET). Inter-
procedural post-pass data-
ow analysis may be used to re-
move other redundant RSXM/SSXM instructions.

3.4. Post-pass Optimizations in a Retargetable

Environment

The routines responsible for reducing the LDPK and
RSXM/SSXM overhead are virtually identical { the only
di�erence occurs in the routines responsible for computing
LAST. Rather than implementing these optimizations with
two sets of nearly-identical code, we have instead developed
generic post-pass data-
ow analysis interfaces which these
and other optimizations may use. In particular, we have
developed generic interfaces for post-pass reaching de�ni-
tions analysis, live-variable analysis, and available expres-
sions analysis [1]. Consequently, these optimizations have
been implemented with very little code duplication.
In order to make use of these data-
ow analysis rou-

tines, one must provide two optimization-speci�c functions
to the appropriate interface. Each of these functions takes
an assembly instruction as input and outputs a bit-vector.
For reaching de�nitions and available expressions analysis,
these functions are gen and kill { gen(i) and kill(i) repre-
sent the set of de�nitions generated and killed, respectively,
by instruction i. For live-variable analysis, these functions
are use and def { use(i) and def(i) represent the set of data
used and de�ned, respectively, by instruction i. We have
used the available expressions interface to implement the
optimizations of Sections 3.1 and 3.3. As an example of the
use of the gen and kill functions, assume variable v has been
statically allocated to data-memory page 5. Then,

� gen(LDPK(v)) = < 5 >

� kill(LDPK(v)) = < 0, 1, 2, 3, 4, 6, 7, ..., 511 >

We have also developed a generic graph coloring inter-
face that performs live-variable analysis and graph coloring
of optimization-speci�c data. We have implemented the
optimization of Section 3.2 by providing this interface with
the set of eligible variables of each procedure in the applica-
tion program. We have also used this interface to allocate
address registers to the pointer variables of a program[2].

4. EXPERIMENTAL RESULTS

We have implemented our optimizations in the SPAM com-
piler [5] { a joint project of Synopsys, Inc., Princeton Uni-
versity, University of Aachen, and M.I.T. { which is a retar-
getable code generation framework for embedded DSP pro-
cessors. Table 1 shows the results of applying our post-pass
optimizations to benchmarks from the DSPstone bench-
mark suite [7] { adpcm is a large speech-encoding algorithm,
while complex update,�t, �r, iir biquad, lms andmatrix mul-
tiply are small DSP kernels. The benchmarks are listed in
the �rst column of Table 1. The next column speci�es the

DSPstone LDPK Count (After Coloring) RSXM/SSXM Count

Benchmark Initial Global InterProc Initial Global InterProc

adpcm 692 (461) 385 (37) 364 (1) 105 59 49
complex update 4 (4) 4 (4) 1 (1) 1 1 1

�t 55 (55) 17 (17) 1 (1) 25 5 3

�r 40 (40) 5 (5) 1 (1) 16 2 2
iir biquad 13 (13) 6 (6) 1 (1) 5 3 2

lms 12 (12) 5 (5) 1 (1) 6 2 2

matrix multiply 19 (19) 4 (4) 1 (1) 7 2 2

Table 1. Results of post-pass optimizations.

total number of LDPK instructions present in the assembly
code after basic block code generation has been performed.
These numbers serve as base measurements against which
we will compare the results of our optimizations. The next
two columns specify the total number of LDPKs present
after global and inter-procedural data-
ow analysis, respec-
tively, have been performed. The numbers in parentheses
specify the total number of LDPK instructions present af-
ter variable coloring and post-pass data-
ow analysis have
been performed in succession. The next column speci�es
the total number of RSXM/SSXM instructions present
in the assembly code after basic block code generation has
been performed. Again, these values serve as base measure-
ments. The �nal two columns specify the total number of
RSXM/SSXMs present after global and inter-procedural
data-
ow analysis, respectively, have been performed.

In our experiments, we assumed the compiler allocated
eligible variables to data-memory in order of decreasing
static frequency. It is evident that inter-procedural post-
pass data-
ow analysis, combined with coloring of auto-
matic variables, essentially eliminated the LDPK overhead
in each of these benchmarks. For instance, for the adpcm
benchmark, global data-
ow analysis combined with color-
ing resulted in an LDPK instruction count of 37, a 94.6%
reduction from the base measurement of 692, while inter-
procedural analysis combined with coloring resulted in an
LDPK overhead of just one instruction. These results can
be attributed to the fact that after coloring, only one page
of memory was required for static storage of eligible vari-
ables. For the smaller benchmarks, inter-procedural data-

ow analysis resulted in the same LDPK overhead, regard-
less of whether or not coloring was performed. For example,
for the �t benchmark, global data-
ow analysis combined
with coloring resulted in an LDPK instruction count of 17,
a 69% reduction from the base measurement of 55. Inter-
procedural analysis with or without coloring reduced the
LDPK count to just one. These results can be attributed
to the small number of eligible variables present in these
programs { the compiler was able to allocate them to one
page of memory even without coloring.

Finally, it is evident that our optimizations were quite
successful at reducing the RSXM/SSXM overhead. For
instance, for the adpcm benchmark, global data-
ow analy-
sis resulted in an instruction count of 59, a 43.8% reduction
from the base measurement of 105. Inter-procedural anal-
ysis reduced the overhead further by 16.9%. For the �t
benchmark, our optimizations reduced the overhead from
the base measurement of 25 to 3, an 88% reduction.

5. CONCLUSIONS

We have described some post-pass optimizations that signif-
icantly improve the quality of compiled code for embedded
DSP systems. In particular, we have shown how redun-
dant LDPK and RSXM/SSXM instructions can be elim-
inated by performing global and inter-procedural data-
ow
analysis on the assembly code. We have also shown how
coloring of all statically-allocated automatic variables can
signi�cantly reduce the data-memory requirements of the
application software, as well as further reduce the LDPK
overhead. Finally, we have described our implementation
of generic interfaces for post-pass data-
ow analysis and
graph coloring which can be used to implement these, as
well as other machine-dependent optimizations.

6. ACKNOWLEDGEMENTS

This research was supported by an NSF NYI award (grant
MIP 9457396).

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] G. Araujo, A. Sudarsanam, and S. Malik. Instruction
Set Design and Optimizations for Address Computation
in DSP Architectures. In Proceedings of 1996 Interna-
tional Symposium on System Synthesis, 1996.

[3] P. Briggs, K.D. Cooper, and L. Torczon. Improvements
to graph coloring register allocation. acm Trans. on
Prog. Lang. and Sys., 16(3):428{455, 1994.

[4] Texas Instruments. TMS320C2x User's Guide. January
1993. Revision C.

[5] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang,
G. Araujo, A. Sudarsanam, S. Malik, V. �Zivojnovi�c,
and H. Meyr. Code Generation and Optimization Tech-
niques for Embedded Digital Signal Processors. In G. De
Micheli and M. Sami, editors, Hardware/Software Co-
Design, pages 165{186. Kluwer Academic Publishers,
1996. Proceedings of the NATO Advanced Study In-
stitute on Hardware/Software Co-Design.

[6] W. Lin. An Optimizing Compiler for the TMS320C25
DSP Processor. Master's thesis, University of Toronto,
1995.

[7] V. �Zivojnovi�c, J. Mart��nez Velarde, and C. Schl�ager.
DSPstone: A DSP-oriented Benchmarking Methodol-
ogy. In Proceedings of the 5th Int'l Conference on Signal
Processing Applications and Technology, October 1994.

