
CODE GENERATION BY USING INTEGER-CONTROLLED
DATAFLOW GRAPH

Takashi Miyazaki and Edward A. Lee *
Information Technology Research Laboratories, NEC Corporation

1-1, Miyazaki, 4-chome, Miyamae-ku, Kawasaki, Kanagawa, 216, Japan
miyazaki@dsp.cl.nec.co.jp

* Dept. of EECS, University of California, Berkeley
518 Cory Hall, #1770, Berkeley, CA 94720-1770, USA

eal@eecs.berkeley.edu

ABSTRACT

Integer-Controlled Dataflow (IDF) and its code generation
applications in Ptolemy are presented. In IDF graphs, which
specify data processing systems, data token flow is controlled
by integer control tokens and states of actors at run-time. The
firing order of actors (schedule) is determined at compile-
time, however, the actors are conditionally activated at run-
time. This static schedule contributes to effective simulation
of systems. IDF supports code generation. This enables code
generation from program graphs that include conditional
jumps, loops and repetitions, and greatly improves the
practical usability of the program synthesis in Ptolemy.

1. INTRODUCTION

 Ptolemy [1] is a framework for simulation, prototyping and
software synthesis for heterogeneous systems. In Ptolemy, a
system is specified by a dataflow graph in which nodes
represent computational actors and data token flow between
them along the arcs of the graph. Algorithms with control
flow that is completely deterministic can be effectively
represented by using the synchronous dataflow (SDF) model
of computation [2]. In SDF graphs, each actor consumes and
produces a constant number of tokens at every firing. The
advantage of the SDF model is that it is possible to determine
the execution order of actors (schedule) and memory
requirements at compile-time. However, data-dependent
decision-making at run-time is required in many digital
signal processing algorithms. Dynamic dataflow (DDF) [4,
5] is a data-driven model that includes asynchronous
operations. The DDF model is usable, but the overhead of
run-time scheduling is excessive.

To preserve the compile-time scheduling properties of
SDF but permit data-dependent execution, Boolean-
controlled dataflow (BDF) [6, 7] was developed. The BDF

model of computation extends the SDF model to permit data
movement to depend on the values of certain Boolean tokens
in the system. The BDF model is successfully applied to
simulation and C program synthesis in Ptolemy. Limiting
control variables to binary values, however, is overly
restrictive. A generalization to integer control variables has
been proposed [8].
 In this paper, integer-controlled dataflow (IDF) and its code
generation implementation in Ptolemy are presented. The
IDF graphs, which include IF, CASE, REPEAT and LOOP
control structures, support not only simulation but also code
generation. C and DSP assembler programs with the IDF
structure can be synthesized.

2. INTEGER-CONTROLLED DATAFLOW
GRAPH

2.1. IDF Control
A digital signal processing system is described as a

dataflow graph in Ptolemy. Data token flow in the IDF graph
is controlled by IDF actors. The IDF actor (Fig. 1) evaluates
integer values of tokens received from its control port and its
own internal state to decide its behavior, such as input and
output port selection and data processing at run-time.

IDF is derived from BDF in the Ptolemy class hierarchy

,')�DFWRU

FRQWURO

LQSXWV
RXWSXWV

VWDWH

SURFHVVLQJ

HYDOXDWLRQ

Fig. 1 IDF actor

in order to fully utilize BDF scheduling techniques to control
execution of actors in IDF. In BDF, control of token flow at a
conditional port of an actor is a function of the value of a
Boolean control token. An input conditional port will either
consume a token, or consume no token, depending on the
control. An output conditional port will either produce a
token or not produce a token.

The behavior of IDF actors newly implemented in Ptolemy
is managed by an integer control token and a state variable of
the actor. To use BDF conditional ports, a decision function
is introduced into the IDF dataflow control mechanism as
shown in Fig. 2. The decision function evaluates a function of
the integer values of a token from a control port and a state of
the actor, and returns the Boolean-valued result. A
conditional port (either an input or an output) is activated
depending on the result of the decision function. The decision
function is a user-defined function programmed in the host
language. The combination of decision functions and
conditional ports makes it possible to create a variety of IDF
actors that control token flow.

2.2 IDF Actor
 CASE-BEGIN, CASE-END, REPEAT-BEGIN,
REPEAT-END and LOOP are a basic set of IDF actors to
build IDF graphs. CASE-BEGIN and CASE-END actors
work as a switch and a selector, respectively. The CASE-
BEGIN actor passes input data tokens to one of output ports
selected by a control token. The CASE-END actor receives
input data tokens from the selected input port, and send them
to the output port. A pair of CASE-BEGIN and CASE-END
actors in Fig. 3 form a case structure equivalent to switch-
case statements in C programs. In this example, data tokens
go through one of three data paths chosen by the case control
token. It is obvious how CASE-BEGIN and CASE-END can
be implemented with the structure in Fig. 2

REPEAT-BEGIN and REPEAT-END actors are used for
multiphase execution. The REPEAT-BEGIN actor receives a
control token (the desired number of repetitions) and an input
data token in its first phase, and sends an output token once
on each subsequent phase of a cycle. The length of a cycle is
determined by the integer control token. The REPEAT-END
actor receives input data tokens on every phase of its cycle,
but sends an output token only in the last phase. The
REPEAT-BEGIN and REPEAT-END actors hold a repeat
count as a state, therefore, the control token is required only
in the first phase. These REPEAT actors are subtly different
from multi-rate actors in SDF, because each repetition is
counted as one iteration in the actor execution schedule.

The LOOP actors in Fig. 5 realizes iteration in dataflow
graphs. The LOOP actor receives the number of the loop
count and an input data token at the beginning of the iteration.
The data token cycles around the loop path repeatedly up to
the loop counts, and passes out from the output port at the end
of iteration. The LOOP actor keeps the iteration count as its
state; therefore, it runs by itself after the number of iteration

GGHHFFLLVVLLRQRQ

IXQFIXQFWLWLRQRQ

FFRRQWQWUURROO

SSRRUUWW

LLQQSSXW�XW�SSRRUWUW

VVWWDDWWHH

��LLQWQWHHJHJHUU��

,')�FRQGLWLRQDO�SRUW

GDWD�WRNHQ

%')

FRQGLWLRQDO

SRUW

%RROHDQ

FRQWURO

WRNHQ

LQWHJHU

FRQWURO
WRNHQ

�758(�

Fig. 2 IDF dataflow control

LQSXLQSXWW

GDWDGDWD

FFDVDVHH

FFRQRQWURWUROO

&&
$$
66
((
�� %
(
*

%
(
*
,,
11

&&
$$
66
((
�� (
1
'

(
1
'

RRXWSXXWSXWW

GDWDGDWD

Fig. 3 Case actors

UUHSHHSHDDWW
FFRQRQWWUURROO

LLQQSXSXWW
GGDDWWDD

55
(
3
(
3
(
$

(
$
77
�%�%
((
**
,,
11

55
(
3
(
3
(
$

(
$
77
�(�(
11
''

RRXXWSWSXXWW
GGDDWWDD

Fig. 4 REPEAT actors

/22/2233

OORRRRSS

FFRRQQWWUURORO

LQLQSXSXWW

GGDDWWDD

ORRS�SDWK

RRXXWWSSXXWW

GGDDWWDD

Fig. 5 LOOP actor

is set.

2.3 IDF Graph
IDF actors such as IF, CASE, REPEAT and LOOP attain

flexible system expression. SDF actors are also available in
IDF graphs; therefore, a variety of systems can be easily
described. A simple (toy) example of an IDF graph is shown
in Fig. 6. This graph has a CASE structure. IIDUniform, Abs
and QntBtsInt actors generate control tokens. Source data
from the Const actor are switched to one of four Gain stars by
CASE actors. The switching depends on the value of the
control tokens. In the simulation, the graph computes data
iteratively according to its execution schedule, and the results
are displayed in Xgraph. The combination of static
scheduling at compile-time and IDF flow control at run-time
greatly contributes to efficient simulation on Ptolemy.

3. CODE GENERATION AND
APPLICATION

The IDF capability also supports code generation [9] in
Ptolemy. Programmers edit program graphs composed of
existing SDF code generation actors and IDF code generation
actors such as CASE-BEGIN, CASE-END, REPEAT-
BEGIN, REPEAT-END and LOOP. The code generation
procedure is as follows. First, the scheduler makes a list that
details the firing order of actors (List 1 shows the Ptolemy
representation of such a schedule for the program in Fig. 6).
Then, buffer size and memory allocation are determined.
This is possible, because execution order of the actors is
determined at compile-time. Finally, the code is generated by
concatenating code blocks in the firing order. The decision
functions of IDF actors are defined as subroutines in the
target language. When conditional branch statements are
found in the schedule during code generation, they are
replaced by a call to the decision-making subroutine and a
conditional branch instruction in the target language (List 2).
To make generated programs compact, IDF actors can share

the decision-making subroutines. Code synthesis of C and
Motorola 56000 DSP assembler programs from the IDF
program graphs is currently attained.
 The IDF graphs can effectively describe a variety of digital
signal processing block diagrams. For example, in video
coding algorithms, such as MPEG and H.26x series,
encoding mode is dynamically selected to get better
compression result. The mode switching is represented by
using CASE actors. REPEAT actors are useful to express
iterations like the block-by-block process. Support of the IDF
program graphs significantly extends application range of the
code generation in Ptolemy. Especially, the capability of
DSP program synthesis stimulate reuse of assembler program
libraries and helps to design DSP based systems.
 The scheduling of the IDF graph relies on the BDF
techniques. It is known that the static scheduling of BDF
graphs is not always possible. Indeed, it is undecidable for
any given graph whether a static, bounded memory schedule
can be constructed [7]. Nonetheless, experience with BDF
indicates that most practical applications yield static
scheduling. In any case, the set of applications that can be
statically scheduled is much larger than the set that can be
described with SDF.

4. CONCLUSION

IDF and its code generation applications in Ptolemy are
presented. The IDF model of computation is built on BDF
with the introduction of a decision function. The IDF
schedule is determined at compile-time, and actors
conditionally run at run-time. IDF graphs, which support
CASE, REPEAT and LOOP, have capability to specify a
variety of DSP systems. These features contribute to
effective and efficient simulation. IDF supports code
generation. This enables code generation from program
graphs that include conditional jumps, loops and repetitions,
and greatly improves the practical usability of the program
synthesis in Ptolemy.

Fig. 6 IDF Graph with case actors

REFERENCES

[1] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
´Ptolemy: A framework for simulating and prototyping
heterogeneous systems,µ International journal of Computer
Simulation, special issue on Simulation Software
Development, vol. 4, pp. 155-182, 1994.
[2] E. A. Lee and D. G. Messerschmit, ´Synchronous data
flow,µ Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-
1245, 1987.
[3] E. A. Lee, ́ Consistency in Dataflow Graphs,µ IEEE
Transactions on Parallel and Distributed Systems, Vol. 2,
No.2, April 1991.
[4] D. G. Messerschmitt, ́Structured Interconnection of
Signal Processing Programs,µ Globecom, Atlanta, Georgia,
1984.
[5]D. G. Messerschmitt, ´A Tool for Structured Functional
Simulation,µ IEEE Journal on Selected Areas in
Communications, vol. SAC-2 no. 1, 1984.
[6] J. Buck and E. A. Lee, ´Scheduling Dynamic Dataflow

Graphs With Bounded Memory Using the Token Flow
Model,µ Proc. Of ICASSP·93, 1993.
[7] J. Buck, ́ Scheduling Dynamic Dataflow Graphs With
Bounded Memory Using the Token Flow Model,µ

Memorandum No. UCB/ERL M93/69 (Ph.D. Thesis), EECS
Dept., University of California, Berkeley, September 1993.
[8] J. T. Buck, ́Static Scheduling and Code Generation from
Dynamic Dataflow Graphs with Integer-Valued Control
Systems,µ Proc. of IEEE Asilomar Conf. on Signals, Systems,
and Computers, Oct. 31, 1994.
[9] J. L. Pino, S. Ha, E. A. Lee and J. T. Buck, ´Software
Synthesis for DSP Using Ptolemy,µ Journal of VLSI Signal
Processing, 9, 7-21, 1995.
[10] S. Ritz, M. Pankert, V. Zivojnovie and H. Meyr, ´High
level software synthesis for the design of communication
systems,µ IEEE Journal on Selected Area in Communications,
pp. 348 - 358, Apr. 1993.
[11] M. Willems, M. Pankert and S. Ritz, ´Fine grain code
synthesis within a block diagram oriented code generation
environment,µ Proc. of ICASSP, Detroit, 1995.

{ fire case4.demo.IIDUniform1 }
{ fire case4.demo.Abs1 }
{ fire case4.demo.QntBtsInt1 }
{ fire case4.demo.auto-fork-node1 }
{ fire case4.demo.Const1 }
{ fire case4.demo.ICaseB41 }
{ if(case4.demo.ICaseB41.SUB_CntlEq0_0(demo_auto-fork-node1_output#2,statOutput0)) { { fire case4.demo.Gain1 } } }
{ if(case4.demo.ICaseB41.SUB_CntlEq1_1(demo_auto-fork-node1_output#2,statOutput1)) { { fire case4.demo.Gain2 } } }
{ if(case4.demo.ICaseB41.SUB_CntlEq2_2(demo_auto-fork-node1_output#2,statOutput2)) { { fire case4.demo.Gain3 } } }
{ if(case4.demo.ICaseB41.SUB_CntlEq3_3(demo_auto-fork-node1_output#2,statOutput3)) { { fire case4.demo.Gain4 } } }
{ fire case4.demo.ICaseE41 }
{ fire case4.demo.Xgraph1 }

List 1 Run schedule of actors for the IDF graph with case actors

;------ Beginning of conditional branch (begin-if) [Depth = 1] ------
; if(case4.demo.ICaseB41.SUB_CntlEq0_0(control,statOutput0) != 0)

move x:1,a ; load 'control' to A register
move y:1,b ; load 'state' to B register
jsr SUB_CntlEq0_0 ; call an evaluation function
jne IFBRANCH_10 ; branch if result of the eval. func. is FALSE (Z flag == 0)

; code from star case4.demo.Gain1 (class CG56Gain)
clr a
move a,x:3

;------ End of conditional branch (end-if) [Depth = 1] ------
IFBRANCH_10

List 2 DSP assembler program generated for conditional run of an actors

