
FIXED-POINT C COMPILER FOR TMS320C50 DIGITAL SIGNAL PROCESSOR

Jiyang Kang Wonyong Sung

School of Electrical Engineering
Seoul National University, KOREA

jiyang@hdtv.snu.ac.kr and wysung@dsp.snu.ac.kr

ABSTRACT

A �xed-point C compiler is developed for convenient and ef-
�cient programming of TMS320C50 �xed-point digital sig-
nal processor. This compiler supports the `fix' data type
that can have an individual integer word-length according
to the range of a variable. It can add or subtract two data
having di�erent integer word-lengths by automatically in-
serting shift operations. The accuracy of �xed-point mul-
tiply operation is signi�cantly increased by storing the up-
per part of the multiplied double-precision result instead of
keeping the lower part as conducted in the integer multipli-
cation. Several target speci�c code optimization techniques
are employed to improve the compiler e�ciency. The empir-
ical results show that the execution speed of a �xed-point C
program is much, about an order of magnitude, faster than
that of a oating-point C program in a �xed-point digital
signal processor.

1. INTRODUCTION

The reduction of development time by employing a high-
level language is very much needed for the programming
of digital signal processors. Especially, C compilers for
oating-point digital signal processors are gaining accep-
tance because of the shortened development time and the
improved compiler e�ciency. However, C compilers for
�xed-point digital signal processors have met with little ac-
ceptance [1] [2] especially because of the overhead in execut-
ing oating-point operations using a �xed-point data-path.
One may use the `int' data type in C language not to use
oating-point operations, but it results in a severe loss of ac-
curacy, especially for performing multiply operations, even
after careful scaling of the program. Since the lower part
of the 31 bit product is stored as the result in the integer
multiplication, the input data to the multiplier have to be
severely scaled down in order to prevent overows. It is also
tedious to develop integer programs.

In this paper, we propose a C compiler that supports the
`fix' data type and corresponding arithmetic operations to
solve these problems. The execution speed and the �nite
word-length e�ects of the oating-point, integer, and �xed-
point implementations are compared by using biquad IIR
digital �lter and ADM coder programs. Texas Instruments'
�xed-point digital signal processor, TMS 320C50, is em-
ployed [3], and the GNU compiler, gcc, is modi�ed. Discus-
sions on our prototype �xed-point C compiler based on the
lcc retargetable C compiler [4] is shown in [5]. Relevant ap-
proaches for the Motorola 56000 DSP and automatic scaling
at assembly level can be found in [6] and [7], respectively.

2. FIXED-POINT ARITHMETIC RULES

An integer variable or a constant in C language consists of,
usually, 16 bits, and the LSB(Least Signi�cant Bit) has the
weight of one for the conversion to or from the oating-point
data type. This can bring overows or unacceptable quanti-
zation errors when a oating-point digital signal processing
program is converted to an integer version. Therefore, it is
necessary to assign a di�erent weight to the LSB of a vari-
able or a constant [7] [8]. For this purpose, we employed
a �xed-point data type that can have an individual integer
word-length as follows:

fix(integer_wordlength) variable_name;

Note that the range (R) that a variable can represent and
the quantization step (Qs) are dependent on the integer
word-length (IWL) as follows.

�2IWL
� R < 2IWL (1)

Qs = 2�(15�IWL) (2)

The arithmetic rules based on this �xed-point data rep-
resentation and a hardware data-path having a 16 bit by 16
bit two's complement multiplier, 16 bit ALU, and a barrel
shifter can be derived as follows.

2.1. Addition or Subtraction

Two data can be added or subtracted after equalizing the
integer word-length for them. The integer word-length can
be modi�ed by arithmetic shift operations. An arithmetic
right shift of 1 increases the integer word-length by 1. For
example, the program shown in Fig. 1-(a) can be compiled
as depicted in Fig. 1-(b). Note that SFR(1) represents an
one-bit arithmetic right shift.

fix(2) x; /* IWL of 2 */

fix(3) y; /* IWL of 3 */

y = x + y;

(a)

y = ADD (SFR(1) x, y);

(b)

Figure 1. Fixed-point add-operation

16x16 bit
multiplier

LSBMSB

to memory

P(31:0)

P(30:15)

h(15:0)

x(15:0)

(fixed−point case)
to memory

(integer case)

P(15:0)

Figure 2. Integer and �xed-point multiplication

2.2. Multiplication

Two's complement multiplication of two 16 bit data, x and
y, yields a 31 bit result in the P register, P(30:0), as shown
in Fig. 2. Note that an extra sign bit is eliminated in
the two's complement multiplication process. In the mul-
tiplication of the `fix' type data, the upper 16 bit part,
P(30:15), is stored as the product, while the lower 16 bit
part is stored in the integer multiplication (Fig. 2). For
example, the program shown in Fig. 3 -(a) can be compiled
as depicted in Fig. 3 -(b) by the �xed-point C compiler.
Note that SFL(2) represents a two-bit left shift.

fix(2) x; /* IWL of 2 */

fix(3) y; /* IWL of 3 */

y = x * y;

(a)

P(31:0) = MUL (x, y);

y = SFL(2) P(30:15);

(b)

Figure 3. Fixed-point multiply-operation

3. COMPILER STRUCTURE

The proposed �xed-point C compiler for TMS320C50 is
based on the GNU C compiler, gcc, from the Free Software
Foundation [9]. The overall compiler structure is shown in
Fig. 4. Not only the back-ends of the gcc, which conducts
the target speci�c code generation, but also the middle part
were modi�ed to implement a few unique features in this
�xed-point C compiler, such as scaling and code optimiza-
tion.
The overall compilation process is as follows. In the �rst

step, the compiler preprocesses source program, and ob-
tains the integer word-length information of the variables
used in the source program. The integer word-length can
be given manually or determined automatically using the
Fixed-Point Optimization Utility [8]. The Fixed-Point Op-
timization Utility converts the float data type variables
into a corresponding C++ range estimation class, and esti-
mating their integer word-lengths by simulation. Note that
the integer word-length of a constant is determined auto-
matically by the compiler. Source programs are converted
into syntax trees by the parser. These syntax trees are
then transformed into intermediate representations known
as register transfer language (RTL) expressions by the RTL
generator.
In the second step, the compiler conducts several

machine-independent optimizations that are supported by

floating
−point
C source

preprocessor

parser

RTL generator

optimizer

register allocator

post−optimizer

assembly
code

scaler

syntax tree

RTL representation

IWL infocode generator

IWL info

modified gcc

 fixed
−point
C source

fixed−point
C compiler

Fixed−Point
Optimization
 Utility

Figure 4. Overall Compiler structure

C source
 file

IWL(var)
 from
preprocessor

IWL(const)

IWL(ACC)

IWL(temp)

intermediate
 assembly
 code

scaled
assembly
 code

modified
 gcc scaler

Figure 5. Scaling steps

gcc, such as jump optimization, common subexpression
elimination, and allocates registers.
In the next step, after appropriate peephole optimiza-

tions, the code generator produces the intermediate assem-
bly code by annotating the RTL representations based on
the instruction patterns de�ned in the target description
�le. At the same time, the compiler divides the source pro-
gram into smaller blocks. The integer word-length of the
accumulator in each block is uniquely determined on the ba-
sis of the integer word-length informations of the operands
involved in the arithmetic operations. The integer word-
lengths of temporary variables which are assigned automat-
ically by the compiler are also determined in this step.
Finally, with the unscaled intermediate assembly code

and various integer word-length informations, the scaler
performs the scaling phase by applying the �xed-point
arithmetic rules discussed before. The number of shifts re-
mained undetermined in the intermediate assembly code are
determined according to the word-lengths of relevant vari-
ables and the accumulator. The compilation steps focused
on scaling procedures are shown in Fig. 5.

4. CODE OPTIMIZATIONS

In this compiler, several post optimization techniques are
implemented. In TMS320C50, certain instructions are con-
trolled by mode variables, such as the product-shift mode
(PM), the data page pointer (DP), and the sign-extension
mode (SXM). In order to use the direct addressing mode to
access global variables e�ciently, it is especially important
to �nd and remove any redundant instructions to load the
data page pointer (i.e., LDP). Whenever a redundant LDP
instruction is identi�ed and eliminated, two machine cy-
cles can be saved. With the informations from the reaching
de�nition analysis [10], we can eliminate redundant mode
setting instructions.
In TMS320C50, another optimization point is to improve

the allocation of local variables. Since address change more
than one requires additional instructions (i.e., ADRK or
SBRK), minimizing the number of such instructions by op-
timal allocation of local variables in order to utilize the
post-increment and post-decrement addressing modes can
improve the overall performance [11] [12]. In addition, re-
moving redundant o�set-updating instructions also greatly
contributes to the performance of the indirect addressing
mode. We employed an optimization algorithm which uses
a table of variables to track the values of auxiliary registers
and the auxiliary register pointer similar to the algorithm
shown in [13].
Besides these optimizations, other peephole optimiza-

tions such as instruction compaction and loop optimization
are also performed to fully exploit the architecture speci�c
features of the TMS320C50. The instruction compaction is
to combine multiple operations into a parallelized instruc-
tion and the loop optimization is to improve the perfor-
mance of the test-and-branch sequence at the end of loop
body.

5. EXPERIMENTAL RESULTS

A biquad IIR �lter and an adaptive delta modulator
were taken for the experimental examples. We used the
TMS320C2x/5x optimizing C compiler from Texas Instru-
ments (version 6.60) [14] to compile the oating-point C
versions of the example programs, while our �xed-point C
compiler was used for the �xed-point C versions. We set
the optimization levels of both compilers to be the level 0
in all of our experiments.

5.1. Biquad Filter

A biquad digital �ltering program shown in Eq. (3) and
(4) is implemented using oating-point and �xed-point data
types.

u[n] = 1:683u[n� 1]� 0:7843u[n� 2] (3)

+ x[n]

y[n] = u[n]� 0:669u[n� 1] + u[n� 2] (4)

In the �xed-point implementation, the coe�cients and
the data can be represented in 16 bit full precision because
there is no overow in the multiplication. Thus, it is possi-
ble to obtain the SQNR of about 60 dB as shown in Table 1.
In terms of the execution speed, it is shown that the �xed-
point C program is about 23 times faster than the oating-
point C program and 2.5 times slower than the hand-coded
assembly program. Note that an optimally scaled integer C
program only yields the SQNR of 21.27 dB [5].

Table 1. Biquad �lter: performance comparison ac-
cording to the implementation methods

Method Manual
Assembly

Fixed-
Point C

Floating-
Point C

SQNR
(dB)

64.09 57.69 -

Machine
Cycles

16 40 938

5.2. Adaptive Delta Modulator

An adaptive delta modulator program shown in Fig. 6
is implemented using oating-point and �xed-point data
types. The compiled codes are shown in Fig. 7. Since
this algorithm contains several conditional branches, the
upper and the lower bounds of the number of machine cy-
cles are presented here. In this example, the performance
gap between the manual assembly program and the com-
piled �xed-point C program is narrowed. The �xed-point C
program is 12 to 13 times faster than the oating-point C
program, but it is still slower than the hand-coded assembly
program by a factor of 1.42-1.58.

Table 2. ADM: performance comparison according
to the implementation methods

Method/
Machine
Cycles

Manual
Assembly

Fixed-
Point C

Floating-
Point C

Best 48 72 880

Worst 54 100 1283

6. DISCUSSIONS

In this paper, a �xed-point C compiler which introduces
a new data type to support �xed-point arithmetic rules for
TMS320C50 digital signal processor is presented. The com-
parison results show that the �xed-point C compiler can
provide an acceptable compromise to the users of the �xed-
point digital signal processor in terms of SQNR, execution
speed, and the development e�orts. Although the execution
time of the compiled �xed-point code is 1.5 to 2.5 times
longer than that of the hand-coded assembly program, the
compiler can be improved by applying better target speci�c
optimization techniques in the future. At this moment, the
developed compiler does not support local �xed-point vari-
ables and �xed-point structures, but is useful for �xed-point
prototyping of real-time digital signal processing applica-
tions.

ACKNOWLEDGMENTS

The research described in this paper was supported by the
LG Electronics Research Center, KOREA.

REFERENCES

[1] Buyer's Guide to DSP Processors, Berkeley Design
Technology, Inc.

[2] V. �Zivojnovi�c, \Compilers for Digital Signal Proces-
sors," DSP & Multimedia Technology, vol. 4, no. 5, pp.
27{45, July/August, 1995.

[3] TMS320C5x User's Guide, Houston, Texas Instruments
Inc., 1993.

[4] C. Fraser and D. Hanson, A Retargetable C Compiler:
Design and Implementation, Benjamin/Cummings,
1995.

[5] Wonyong Sung and Jiyang Kang, \Fixed-Point C Lan-
guage for Digital Signal Processing," in Proc. of Twenty-
Ninth Annual Asilomar Conference on Signals, Systems
and Computers, vol. 2, pp. 816{820, Oct. 1995.

[6] K. Baudendistel, Compiler Development for Fixed-
Point Processors, PhD thesis, Georgia Institute of Tech-
nology, 1994.

[7] Seehyun Kim and Wonyong Sung, \A Floating-Point
to Fixed-Point Assembly Program Translator for the
TMS320C25," IEEE Trans. Circuits and Systems, vol.
41, no. 11, pp. 730{739, Nov. 1994.

[8] Seehyun Kim, Ki-Il Kum, and Wonyong Sung, \Fixed-
Point Optimization Utility for C and C++ Based Dig-
ital Signal Processing Programs," in Proc. 1995 IEEE
Workshop on VLSI Signal Processing, pp. 197{206, Oct.
1995.

[9] R. Stallman, Using and Porting GNU CC, Free Software
Foundation, Inc., Nov. 1995.

[10] A. Aho, R. Sethi, and J. Ullman, Compilers - Prin-
ciples, Techniques, and Tools, Addison-Wesley, 1986.

[11] David H. Bartley, \Optimizing Stack Frame Accesses
for Processors with Restricted Addressing Modes,"
Software-Practice and Experience, vol. 22, no. 2, pp.
101{110, Feb. 1992.

[12] S. Y. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A.
Wang, \Storage Assignment to Decrease Code Size," in
Proc. of the 1995 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp.
186{195, Jun. 1995.

[13] Wen-Yen Lin, Corinna G. Lee, and Paul Chow, \An
Optimizing Compiler for the TMS320C25," in Proc.
of the International Conference on Signal Processing
Applications and Technology, vol. 1, pp. 689{694, Oct.
1994.

[14] TMS320C2x/C2xx/C5x Optimizing C Compiler, Hous-
ton, Texas Instruments Inc., 1995.

fix(12) sr; /* reconstructed signal */

fix(10) step; /* step size */

fix(12) se; /* estimated signal */

fix(13) d; /* difference */

...

/* delay line */

sgn2 = sgn1;

sgn1 = sgn0;

/* beginning of adm */

se = ACOEF * sr;

d = in - se;

sgn0 = SIGN(d);

code = sgn0;

if((sgn0&&sgn1&&sgn2)||(!sgn0&&!sgn1&&!sgn2))

step = ALPHA * step + BETA;

else

step = ALPHA * step;

return (sr = (sgn0?(se+step+BIAS)

:(se-step-BIAS)));

Figure 6. ADM example: �xed-point C program

...

LT _sr

MPYK 7AE1h

PAC

SACH _se, 1

LARP AR6

SBRK 3

LAC *,16

SUB _se,15

ADRK 5 ;

SACH *,0

SACH _d,0

...

LDPK _step

LT _step

MPYK 7C29h

PAC

ADDK 7FFFh,12

SACH _step,1

B L6

L3:

LDPK _step

LT _step

MPYK 7C29h

PAC

SACH _step,1

L6:

LDPK _sgn0

LAC _sgn0

BZ L7

LDPK _se

LAC _se,16

ADD _step,14

ADDK 7FFFh,11

B L10

L7:

LDPK _se

LAC _se,16

SUB _step,14

SUBK 7FFFh,11

L10:

LARP AR6

ADRK 2

SACH *,0

LAC *,16

LDPK _sr

SACH _sr,0

LAC *,16

SBRK 2 ;

...

Figure 7. ADM example: compiled �xed-point C
program

