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ABSTRACT

This paper describes some of the main problems and
issues speci�c to the transcription of broadcast news
and describes some of the methods for solving them
that have been incorporated into the IBM Large Vo-
cabulary Continuous Speech Recognition System

1. INTRODUCTION

Signi�cant advances in speech recognition technology
have been achieved recently, as seen on tests con-
ducted with read speech corpora such as the Wall
Street Journal corpus [1]. The focus of research has
shifted recently to transcription of \found" speech like
radio/TV broadcast news. Transcription of broadcast
news presents technical challenges arising from several
sources of signal variability. A typical broadcast news
segment contains speech and non-speech data from sev-
eral sources, such as the signature tune of the show, in-
terviews with people on location - possibly under very
noisy conditions - and interviews over the telephone,
commercials, etc. Broadly speaking, the data in such
broadcasts can be characterized using three criteria:
the quality of the microphone or channel, the charac-
teristics of the speaker, and the condition of the back-
ground. The signal might be acquired using a high
quality microphone, a low bandwidth microphone, or
could be telephone quality. The speaker may be an ex-
perienced announcer or correspondent or an inexperi-
enced speaker.The speech from the former appears sim-
ilar to read speech, whereas the latter produces largely
spontaneous speech. The background may contain mu-
sic, noise, or other interfering speech. In some cases,
there is no speech present - the signal might consist of
a musical interlude or an extended period of noise such
as street noises added to evoke an environment.

Decoding this data with a system trained on a clean
training corpus such as the Wall Street Journal gives
very high error rates [5]. It is necessary to develop
new techniques to deal with such data. Preliminary
ideas along these lines were explored in the IBM system

used in the ARPA sponsored, November 1995 Hub4
radio broadcast news transcription task. Error rates
dropped from 55% to 27% on some test data [5, 6, 7].
This paper describes continuing work on the various
problems encountered and the solutions attempted for
transcription of broadcast news.

The basic philosophy is to �rst try and identify the
segments of input data that belong to one of several
classes and use separate modeling techniques appropri-
ate for each class. For instance, segments detected as
pure music are discarded and not decoded, segments
identi�ed as telephone quality speech are decoded by a
system trained on telephone bandwidth speech, and so
on. In the following sections, we describe techniques to
handle issues in each class.

A brief description of our base recognition system
follows (see [2, 4, 3] for details). The system uses
acoustic models for sub-phonetic units with context-
dependent tying. The instances of context dependent
sub-phone classes are identi�ed by growing a decision
tree from the available training data [2] and specifying
the terminal nodes of the tree as the relevant instances
of these classes. The acoustic feature vectors that char-
acterize the training data at the leaves are modeled by
a mixture of Gaussian pdf's, with diagonal covariance
matrices. The HMM used to model each leaf is a simple
1-state model, with a self-loop and a forward transition.

The training data used for the models in this paper
comes from three sources: WSJ-SI284 [5], MP-10 [5],
and BN-87 (the o�cial 1996 Hub4 evaluation training
data distribution consisting of 30 hours of broadcast
shows from radio and TV). The test data is from one
of the following sources: Dev95H4, Eval95H4, Dev96H4
and Eval94H1. For example, Dev94H4 stands for de-
velopment test data distributed in 1994 for the Hub4
task.

Section 2. describes the segmentation and classi�-
cation scheme, Section ?? the models for the various
conditions, and Section ?? the adaptation used in our
experiments.



2. SEGMENTATION AND

CLASSIFICATION

First, the distribution of feature vectors for each con-
dition is modeled as a Gaussian mixture [5] trained
from hand-labeled data from the MP-10 and BN-87
databases. For each feature vector xt, and model Mj

for condition j, P (xt=Mj) gives the likelihood of the
frame coming from j. Since the condition is typically
stable for a duration of a second or so, one imposes
a minimum-length constraint on the segments. This
is done by assuming a hidden Markov model for the
generation of the input data as shown in Fig. 1. The
jth path in the model corresponds to the input data
belonging to the jth class, and the probability distrib-
ution of the arcs cj;1 � cj;N is given by Mj . The min-
imum length constraints on the segments are imposed
by constraining the minimum length of the paths. The
Viterbi algorithm is used to trace a path through the
trellis corresponding to the model in Fig. 2., and to as-
sign a class id to contiguous sets of the input feature
vectors.
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training data is used to train music-corrupted mod-
els that are then MAP adapted using music-corrupted
broadcast news training data. During testing a music-
cancellation scheme is applied on the test data which
is then decoded with music-corrupted models. On the
1995 Hub4 development test data error rates dropped
from the 56% baseline to about 27% using this algo-
ritm.

3.4. Noise Corrupted Speech

For noise corrupted speech, and speech on degraded
microphones PLP-based feature space gives a su�cient
degree of robustness [13].

3.5. Telephone Bandwidth Speech

The main problem is that the speech has low-
bandwidth. Two approaches are attempted. Firstly, we
use data from the Switchboard telephone corpus (which
contains restricted domain conversational speech). Sec-
ondly, we bandlimit the WSJ SI-284 data to 200-3500
Hz and use this data. On The Telephone Portion
Of Hub4 Development Test Data The Error Rates
Dropped From 55% (With Switchboard Training) To
40%. Based On Preliminary Experiments A Plp-Based
Feature Space Seems To Be More Robust Than Mel-
Cepstral Feature Speace.

3.6. Rapid Evaluation Of Acoustic-Feature In-

formation Capacity

Traditionally, a new set of acoustic features, such as
cepstra from a �lterbank with a di�erent set of center
frequencies, must be tested by training a complete sys-
tem on the new features and then running it on test
data|a very time-consuming project.

There exists, however, a simple algorithm for es-
timating the mutual information between a set of
acoustic features and any given set of phonetic labels.
This mutual information sets an upper bound on the
performance of those acoustic features, but takes much
less computation than the complete training and test-
ing of a recognition system. Such rapid acoustic feature
testing is a prerequisite for the development of powerful
new parametric features.

3.7. Parametric Acoustic Features

Modern recognition systems have very large numbers
of adjustable parameters, typically of the order of 105

or more. Very few of these parameters, however, are in
the signal-processing component of the system. Cur-
rent signal processors are largely algorithmic, such as
Fourier transforms and cepstra. They do have a few
parameters|�lter center frequencies, for example, but
are essentially not specialized for the particular task
of speech recognition. The reason for this lack of spe-
cialization is, undoubtedly, the above alluded-to di�-

culty in determining the performance of any given set of
acoustic features. With the availability of the mutual-
information estimator, however, it becomes feasible to
adapt much larger numbers of parameters in the sig-
nal processor, and thus generate truly speech-speci�c
signal processors.

An example of such a speech-speci�c processor is
a new formant-tracker. In contrast to traditional algo-
rithmic trackers based, e.g. on a linear predictor model,
the new tracker at �rst glance appears heuristic, with
its many \arbitrary" parameters such as cepstral lifter-
ing bandwidths, etc. These parameters, however, are
not adjusted heuristically, but by strict numerical opti-
mization of the mutual information objective, leading
to a set of parameters accurately adapted for its speci�c
task.

4. CONCLUSIONS

Transcription of radio broadcasts poses several chal-
lenges. Many of these are problems whose solution
will signi�cantly advance the state-of-the-art in speech
recognition. Recognition systems have to be developed
that can cope with a variety of signal environments,
speaking styles and accents, and multiple background
noise sources. We have made an initial attempt at de-
veloping a system for transcription of broadcast news
shows. The results obtained in the initial test are en-
couraging. Clearly much more work needs to be done
in order to obtain an acceptable level of accuracy.
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Table I
Class Corr Miss% Err%

Music 163.53 9.2 5.3
Telephone 766.62 0.13 4.2

Music & speech 308.66 2.8 39.6
Correct speaker 1185.96 17.3 13.6


