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ABSTRACT

This paper describes a method of task adaptation in

N-gram language modeling, for accurately estimating the

N-gram statistics from the small amount of data of the

target task. Assuming a task-independent N-gram to be

a-priori knowledge, the N-gram is adapted to a target task

by MAP (maximum a-posteriori probability) estimation.

Experimental results showed that the perplexities of the

task adapted models were 15% (trigram), 24% (bigram)

lower than those of the task-independent model, and that

the perplexity reduction of the adaptation went up to 39 %

at maximum when the amount of text data in the adapted

task was very small.

1. INTRODUCTION

In continuous speech recognition, N-gram language models

have been widely used as e�ective linguistic constraints to

reduce search e�orts [1][2]. However, large amounts of text

data are needed to obtain reliable results with N-grams. In

order to cope with data sparseness, some smoothing tech-

niques [3][4][9], or techniques to reduce the number of pa-

rameters [5][6] have been proposed. However, fairly large

amounts of text data are needed if these techniques are

used, and language data collection is a crucial problem in

the application of current speech recognition technology.

As each task has di�erent N-gram characteristics, lan-

guage data from other tasks cannot be used as same data

simply to increase data numbers. To use these data properly

in statistical sense, a task adaptation technique is needed

to accurately estimate N-gram statistics of the current task

from small data with the good use of language corpora in

other tasks.

In this paper, we propose a task adaptation of N-gram

language model using MAP estimation. This method em-

ploys task-independent N-grams as a-priori knowledge, and

data of the target task as a-posteriori knowledge. By us-

ing MAP estimation, the a-priori knowledge and the a-

posteriori knowledge are combined in proportion to the data

size, and stable parameter estimation would be possible

compared with maximum likelihood estimation.

AAAAAAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAAAA
AAA
AAA
AAA
AAA

AAAAAAAAA
AAA
AAA
AAA
AAA

AAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAAAA
AAA
AAA
AAA
AAA

AAA
...

AAAAAAAA
AAAAAAAA

AA
AA+

AAAAAAAA
AAAAAAAA

text data from  other tasks text data from  the target task

M AP estim ation

task-independent N-gram

task-adapted N-gram

a-posteriori knowledgea-priori knowledge

Figure 1. Task Adaptation Using MAP Estimation

2. N-GRAMS USING MAP ESTIMATION

Generally, a-priori probabilities of N-grams are calculated

using ML (Maximum Likelihood) estimation. In the case

of a word bigram, letting x be the observed sequence, and

p (= p(wljwk)) the a-priori probability of bigram, p can

be determined so as to maximize the likelihood function

f(xjp),

pML = argmax
p

f(xjp) (1)

When word wk occurs N times and is followed by word wl

n times in the corpus, likelihood function f(p) is described

as follows,

f(p) = p
n
(1 � p)

N�n
(2)

By solving the maximizing condition d log f(p)=dp = 0, the

a-priori probability of bigram pML is calculated as follows,

pML = n=N (3)

Therefore, the a-priori probability of a word sequence which

is not found in the sample data, is set to zero.

Using MAP(maximum a-posteriori probability) estima-

tion, probability pMAP can be calculated so as to maximize

the function h(pjx).

pMAP = argmax
p

h(pjx) (4)



Using Bayes' theorem, this equation can be modi�ed as fol-

lows:

pMAP = argmax
p

f(xjp)g(p) (5)

(where g(p) is the a-priori distribution of the probability p.)

Then, using MAP estimation, non-zero a-priori probability

can be assigned from the a-priori distribution.

For an a-priori distribution, we adopt a beta distribution

: ap��1(1� p)��1 (a is a coe�cient for normalization). In

this case, p is calculated as follows using the de�nition of

the MAP estimation,

pMAP = argmax
p

p
n(1 � p)N�n � ap

��1(1 � p)��1

( � argmax
p

L(p)) (6)

L(p) is maximized when d logL(p)=dp = 0. From this max-

imizing condition, the a-priori probability of bigram pMAP

is calculated as follows:

pMAP =
n + � � 1

N + � + � � 2
(7)

The mean � and the variance �
2 of the beta distribution

are known as [9],

� =
�

� + �
; �

2 =
��

(�+ �)2(�+ � + 1)
(8)

From these equations, � and �+ � can be expressed as,

� =
�
2(1� �)

�2
� � ; � + � =

�(1� �)

�2
� 1 (9)

Therefore, a-priori probability of bigram can be solved by

equation (7) and (9), from the mean and the variance of the

a-priori distribution.

In these formulations, only bigram MAP-estimation is

shown. It is trivial that this estimation can be applied to

higher order N-grams by replacing the previous word wk by

the previous (n-1) word sequence wn�1
1 .

3. TASK ADAPTATION USING MAP

ESTIMATION

In order to apply MAP estimation to task adaptation, we

regard a task-independent N-gram (generated by a large

amount of text data including various tasks) as a-priori

knowledge, and the data of the target task as a-posteriori

knowledge.

When task-independent N-gram is assumed as a-priori

knowledge, a-priori distribution is considered as the distri-

bution of a-priori probability of N-gram of each task (Fig.

2). The a-priori probabilities of each task are calculated

using maximum likelihood estimation. The values of mean
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Figure 2. A-Priori Distribution for Task Adaptation

(�) and variance (�2) of this distribution are calculated as

follows,

� =
X
i

ci(w
n�1
1 )pi(wljw

n�1
1 )=

X
i

ci(w
n�1
1 ) (10)

�
2 =

X
i

ci(w
n�1
1 )pi(wljw

n�1
1 )2=

X
i

ci(w
n�1
1 )� �

2 (11)

where ci(w
n�1
1 ) is a frequency at which word sequence wn�1

1

occurs in task i and pi(wljw
n�1
1 ) represents an a-priori prob-

ability of word sequence wn�1
1 to wl of the N-gram of task

i.

When the text data of the target task are assumed as

the a-posteriori knowledge, the values of n and N in the

previous section are expressed as follows,

� N : frequency of word sequence wn�1
1 in the text of the

target task.

� n: frequency of word sequence w
n
1 in the text of the

target task.

By putting these values (�, �2, N and n) into equations

(7) and (9), the a-priori probabilities pMAP of the task-

adapted N-grams can be obtained.

4. SMOOTHING ALGORITHM USING

BACK-OFF METHOD

In the previous section, we described N-gram task adapta-

tion using MAP estimation. There still remains two prob-

lems to use it as a language model. The �rst problem is

that, if we use a large amount of task-independent text data,

some word sequences may not be found in them. In this

case, a-priori probability of N-gram is 0 even if using MAP

estimation. Non-zero probabilities are to be assigned to un-

seen data using smoothing technique. The second problem

is that, the sum of a-priori probabilities of N-grams can



not be set to 1, as each a-priori probability is calculated

dependently using MAP estimation. Though the sum of a-

priori probability is not to be normalized for its application

to continuous speech recognition, it should be normalized

to calculate perplexity score accurately. In order to solve

these problems, we use the idea of the back-o� smoothing

method[4].

If the word sequence wn1 is found in the task-independent

data, a-priori probability pMAP is calculated using the task

adaptation method shown in the previous sections. Then

a-priori probabilities are discounted using Turing's estima-

tion. The discount coe�cient is calculated using the fre-

quency of the word sequence in the task-independent data.

A surplus of probability caused by the discounting is di-

vided to word sequences that are not found in the task-

independent text data, according to the a-priori probabil-

ity of the (n-1)-gram. Summarizing these procedures, the

smoothing method is described as follows,

Ps(wnjw
n�1
1 ) =8<

:
~P(wnjw

n�1
1 ) (c(wn�1

1 ) > 0)

�(wn�11 ) � Ps(wnjw
n�1
2 ) (c(wn�1

1 ) = 0; c(wn�1
2 ) > 0)

Ps(wnjw
n�1
2 ) (c(wn�1

1 ) = 0; c(wn�1
2 ) = 0)

(12)

where,

~P(wnjw
n�1
1 ) =

c(wn
1 ) + 1

c(wn
1 )

�
nc(wn

1
)+1

nc(wn
1
)

� pMAP (wnjw
n�1
1 )

(13)

(nr: number of words which occurred in the text exactly r

times)

�(wn�1
1 ) =

1 �
P

wn:c(w
n

1
)>0

~P (wnjw
n�1
1 )

1 �
P

wn:c(w
n

1
)>0

~P (wnjw
n�1
2 )

(14)

Through out these calculations non-zero probabilities are

assigned to unseen N-grams, and the sum of the a-priori

probabilities is set to 1 by the normalization of the equation

(14).

5. EXPERIMENTAL RESULTS

In order to evaluate the e�ectiveness of our proposed task

adaptation method, an experiment was conducted using the

ATR spontaneous speech database on travel arrangements

[10]. This database is composed of 15 tasks (Table 1). Cur-

rently, this database consists of 1,098 dialogues with 449,070

words in total (vocabulary 6,786). We randomly selected

about a quarter of the dialogues for our test set; at least

one dialogue was selected from each task. The remaining

data were used for training set. Three di�erent models were

compared.

Table 1. List of Tasks
No. Dialogues Content

1) 491 Hotel Service

2) 351 Hotel Reservation

3) 50 Inquiry on Sightseeing Bus Tours

4) 36 Reservation of Meeting Room

5) 28 Inquiry on Means of Transportation

6) 24 Hotel Consulting

7) 22 Airline Reservation

8) 22 Inquiry on Bus or Train Schedule

9) 20 Inquiry on Car Rental

10) 14 Concert Reservation

11) 12 Restaurant Reservation

12) 8 Trouble and Lost Items

13) 8 Road Guide

14) 8 Meal Order

15) 4 Shopping

� Task-Independent Model:

N-grams trained using all data of training set.

� Task-Dependent Model:

N-grams trained using the data of target task only.

� Task-Adapted Model:

N-grams adapted from the task-independent model to

a target task using the proposed method.

Table 2 shows the perplexities of the test set for the three

di�erent models, on word bigrams and trigrams.

As shown in the table 2, the perplexities of task-adapted

models are lower than those of the task-independent mod-

els and the task-dependent models, on both bigrams and

trigrams. These results show that the proposed task adap-

tation is e�cient.

As for bigrams, the perplexities of task-dependent mod-

els are lower than those of the task-independent models for

most of the tasks. This is because task-dependent mod-

els express better characteristics of the target task. As

for trigrams, on the other hand, the perplexities of the

task-independent models are higher than those of the task-

dependent models for most of the tasks. This is because the

problem of sparse data is so severe that parameters of the

task-dependent models can not be correctly estimated by a

small amount of data. Using task adaptation, the problem

of sparse data can be solved by training a large amount of

task-independent training data, and the characteristics of

each task can be expressed well by the task adaptation.

The e�ectiveness of this task adaptation is remarkable

when the amount of adapted text is small. On task 12),

Perplexity of task adapted model is 39% (bigram), 30%

(trigram) lower than those of task-independent models.



Table 2. Perplexity of three di�erent models for individual tasks

Task
Words Task-Independent Models Task-Dependent Models Task-Adapted Models

Training Set Test Set Bigram Trigram Bigram Trigram Bigram Trigram

1) 136,175 42,698 23.168 17.948 22.923 18.260 22.085 17.515

2) 118,124 38,697 14.837 10.071 13.842 9.941 13.402 9.612

3) 19,471 6,610 26.523 17.383 23.910 17.196 20.684 14.705

4) 15,302 5,075 31.270 24.693 38.164 32.811 29.280 24.470

5) 10,791 2,983 24.164 16.544 21.774 16.574 18.328 13.656

6) 8,802 2,999 17.122 11.192 14.661 11.350 12.540 9.127

7) 8,617 2,722 21.106 14.181 18.358 14.656 15.274 11.383

8) 8,537 2,193 21.134 14.288 14.077 11.177 13.351 10.523

9) 8,567 2,528 25.149 18.154 25.897 20.743 20.443 16.097

10) 5,036 1,608 16.582 10.820 14.060 10.931 11.368 8.148

11) 5,326 1,439 12.970 8.867 12.261 9.611 9.564 6.935

12) 3,578 1,165 32.921 19.402 25.232 18.385 19.921 13.399

13) 2,378 1,075 30.294 22.416 32.757 31.567 21.541 19.338

14) 2,572 908 35.490 27.108 45.853 41.285 28.155 23.707

15) 1,750 509 44.088 34.214 47.324 44.573 31.854 27.896

total 25.121 17.819 24.740 20.604 19.186 15.101

6. CONCLUSIONS

In this paper, we proposed a task adaptation method us-

ing MAP estimation. Experimental results showed the ef-

fectiveness of the task adaptation. This e�ectiveness was

greater when the amount of adaptation data was small.

Therefore, e�ective N-grams can be generated from a very

small amount of data. We are planning to apply this lan-

guage model to continuous speech recognition.
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