
DISTANT BIGRAM LANGUAGE MODELLING USING MAXIMUM ENTROPY

M. Simons, H. Ney, S.C. Martin

Lehrstuhl f�ur Informatik VI, RWTH Aachen { University of Technology,
D-52056 Aachen, Germany

ABSTRACT

In this paper, we apply the maximum entropy approach
to so-called distant bigram language modelling. In addition
to the usual unigram and bigram dependencies, we use dis-
tant bigram dependencies, where the immediate predecessor
word of the word position under consideration is skipped.
The contributions of this paper are:
(1) We analyze the computational complexity of the result-
ing training algorithm, i.e. the generalized iterative scaling
(GIS) algorithm, and study the details of its implementa-
tion. (2) We describe a method for handling unseen events
in the maximum entropy approach; this is achieved by dis-
counting the frequencies of observed events. (3) We study
the e�ect of this discounting operation on the convergence
of the GIS algorithm. (4) We give experimental perplexi-
ty results for a corpus from the WSJ task. By using the
maximum entropy approach and the distant bigram depen-
dencies, we are able to reduce the perplexity from 205.4 for
our best conventional bigram model to 169.5.

1. INTRODUCTION

The advantage of using the maximum entropy principle in
language modelling is that the principle provides a well de-
�ned method for incorporating di�erent types of dependen-
cies into a language model. There have been a number of pa-
pers on the application of the maximum entropy principle to
natural language processing [1, 4, 6, 7, 10]. In this paper, we
use the maximum entropy approach in the context of distant
bigram dependencies and study a couple of questions that
arise in the practical use of the maximum entropy method:
� How to implement the GIS training algorithm in a suit-
able way ?

� How to handle unseen events ?

� How is the convergence of the GIS training algorithm
a�ected if the convergence requirements are not exactly
satis�ed ?

� How much improvement can we obtain over a conven-
tional bigram model ?

2. MAXIMUM ENTROPY APPROACH

2.1. The Log-Linear Model

The starting point for the maximum entropy approach is to
consider certain types of dependencies, so-called features,

e.g. speci�c word bigrams or auto-cooccurrences (cache ef-
fect) as in conventional language modelling. For a given
word history h and a word w under consideration, we de-
�ne a feature function for each feature i:

fi(h;w) 2 f0; 1g :

For each of these features, the assumption is that we know
its frequency. Then the maximum entropy principle [1, 4]
tells us that the most general distribution that satis�es
these constraints as expressed by the corresponding frequen-
cies has the following functional form [2, pp. 83-87]:

p�(wjh) =
exp
�P

i
�ifi(h;w)

�
P
w0

exp
�P

i
�ifi(h;w0)

� ;

where for each feature i we have a parameter �i and where
we de�ne: � = f�ig.
The important result of the maximum entropy principle

is that the resulting model has a log{linear or exponential
functional form. In the statistical terminology, the under-
lying sampling approach is referred to as a multinomial one
[2, pp. 62-64]. An important di�erence, however, is that we
are considering conditional probabilities.

2.2. The Maximum Likelihood Criterion

We consider the log-likelihood function G(�) for a training
corpus of running words w1; :::;wn; :::;wN :

G(�) :=

NX
n=1

log p�(wnjhn) =
X
hw

N(h;w) log p�(wjh)

with the usual count de�nitions N(h;w). To �nd the opti-
mal set of parameters �i for maximum likelihood, or what is
equivalent, minimum perplexity, we take the partial deriva-
tives with respect to each of the parameters �i and set them
to zero:

@G

@�i

=
X
hw

N(h;w)
@

@�i

log p�(wjh) = 0 :

After some elementary manipulations, we obtain:

@G

@�i

= � Qi(�) + Ni = 0

with the � dependent auxiliary function Qi(�):

Qi(�) :=
X
hw

N(h) p�(wjh) fi(h;w)



and with the � independent feature counts Ni:

Ni :=
X
hw

N(h;w) fi(h;w) :

3. GIS ALGORITHM

3.1. Principle

The GIS (=generalized iterative scaling) algorithm is a well
known method in statistics for �nding the numerical solu-
tion of the maximum likelihood equations [3, 4]. It is based
on the condition that the number of active features for each
pair (h;w) with N(h) > 0 is constant, i.e.

X
i

fi(h;w) = F = const(h;w) :

Later we will show how we satisfy this condition and how
we combine it with the handling of unseen events, i.e. fea-
tures not seen in training. The GIS algorithm results in the
following iterative update formula:

�
0

i := �i +��i with

��i =
1

F
log

Ni

Qi(�)
:

3.2. Implementation

For implementation reasons, we rewrite Qi(�) as follows:

Qi(�) =

NX
n=1

X
w

p�(wjhn) fi(hn; w) :

This equation allows us to pass over the corpus positions
n (each with history hn) rather than over the set of seen
histories h (each with count N(h)). The advantage of this
modi�cation is that we do not need special data structures,
which would make the implementation e�ort more costly,
and that we are more 
exible with respect to any desired
type of features i.
In addition, for e�ciency reasons, we de�ne the set

I(h;w) of features that is activated by a given pair (h;w):

I(h;w) := fi : fi(h;w) = 1g :

By de�nition, we must have: jI(h;w)j = F . To compute
the conditional probability p�(wjhn), we need to calculate
the denominator which is denoted by Z�(hn):

Z�(hn) :=
X
w

exp
�X

i

�ifi(hn; w)
�

=
X
w

exp
� X
i2I(hn;w)

�ifi(hn; w)
�

=
X
w

exp
� X
i2I(hn;w)

�i

�
:

Thus we have limited the computational e�ort to the active
features i 2 I(hn; w) for a pair (hn; w) under consideration.
The same concept can be used when computing the aux-
iliary function Qi(�). Putting all these concepts together,
we obtain an implementation of the GIS algorithm as shown

Table 1. Implementation of the GIS algorithm.

compute (discounted) feature counts Ni

choose initial values for � = f�ig

for each iteration do

initialize: G(�) = 0

initialize: Qi(�) = 0 for each feature i

for each position n = 1 : : :N do

calculate denominator Z�(hn)

accumulate for perplexity:

G(�) = G(�) + log p�(wnjhn)

for each word w of vocabulary do

for each feature i 2 I(hn; w) do

accumulate Qi(�):

Qi(�) := Qi(�) + p�(wjhn)

update �i for each feature i

in Table 1. To measure the resulting complexity per itera-
tion, we count the number of �i additions in the exponential
function. It is easy to see that this number is

2 �N �W � F ;

where W is the vocabulary size. This is the complexity for
a general language model. In the case of a pure bigram lan-
guage model, there are only W possible histories h, and in
each iteration, we can have a loop over the histories h rather
than the positions n. Thus we would obtain a complexity
of 2 �W 2

� F , which is a big improvement for a database if
N � W .

4. THE FEATURES

4.1. De�nition of Features

For each possible pair (h;w), where the history h is de-
�ned by a sequence of predecessor words v1:::vm, i.e. h :=
v1:::vm = v

m
1 , we introduce the following features, no mat-

ter whether they occurred in the training data or not:
Unigram features (U):

f
U
b (v

m
1 ; w) =

�
1 if w = b

0 otherwise

Bigram features (B):

f
B
ab(v

m
1 ; w) =

�
1 if w = b and vm = a

0 otherwise

Distant bigram features (D):

f
D
ab(v

m
1 ; w) =

�
1 if w = b and vm�1 = a

0 otherwise

Using these three types of features, there are exactly 3 fea-
tures active for each pair (h;w), namely 1 unigram feature,
1 bigram feature and 1 distant bigram feature. As a result,
we have the following functional form for our model for a
word w with the two predecessor words (u; v):

p(wju;v) =
exp[�D(u;w) + �B(v;w) + �U (w)]P

w0

exp[�D(u;w0) + �B(v;w0) + �U (w0)]
;



where the parameters �D(u;w); �B(v;w); �U (w) are to be
trained by the GIS algorithm.

4.2. Handling of Unseen Features

For the features i that were not seen in the training da-
ta, the counts Ni are zero. To gain count mass for them,
we discount the counts of the seen features in the spirit of
the Turing-Good formula. We use the method of absolute
discounting [8]:

Ni =
X
hw

N(h;w)fi(h;w) � di ;

where we use only three independent discounting parame-
ters di, namely one for each of the three feature sets (e.g.
dU = 0:29; dB = 0:70; dD = 0:74).
Similarly, for each of the three feature types, we pool the

parameter �i of unseen events. Thus there are only three in-
dependent parameters �i for unseen features: �

U
; �

B
; �

D
.

As an example, we consider the bigram features. For all un-
seen bigrams (ab), we introduce a single general parameter:

N(a; b) = 0 : �
B
ab = �

B
:

To compute the parameter �
B

in the GIS algorithm, we
need the corresponding count and the corresponding aux-
iliary function Q

B
(�). The feature count of this comple-

mentary feature is computed from the count mass that is
gained by the discounting operation. Denoting the set of
bigram features by the symbol IB (including the unseen

features), we compute the auxiliary function Q
B
(�) from

the normalization constraint:X
i2IB

Qi(�) =
X
i2IB

X
n

X
w

p�(wjhn) fi(hn; w)

=
X
n

X
w

p�(wjhn)
X
i2IB

fi(hn; w)

=
X
n

X
w

p�(wjhn)

=
X
n

1 = N :

It should be noted that the above normalization constraint
is a direct consequence of the speci�c way of de�ning the
features. The advantage of this approach is that we are
able to directly use the discounting parameter obtained by
leaving-one-out for each feature type.

5. EXPERIMENTAL RESULTS

5.1. Database and Task

For the experiments, a 4.5-million word text from the Wall
Street Journal task was used (exact size: 4,472,827 words).
The vocabulary consisted of approximately 20,000 words
(vocab20o.nvp). All other words in the text were replaced
by the label <UNK> for the unknown word. The test set per-
plexity was calculated on a separate text of 325,000 words.
In the perplexity calculations, the unknown word was in-
cluded. The corpora used are the same as in [9] and [10].
Table 2 shows the number of di�erent feature constraints
used for each kind of feature. A single iteration for the
full language model required about 190 CPU hours on the
workstation used (SGI with an R4600 processor).

Table 2. Number of distinct features observed in

the training corpus (4.5 million words).

Type Features

Unigram 19,725
Bigram 875,497
Distant Bigram 1,218,320
Trigram 2,370,914

Table 3. Perplexities over the iterations for the uni-

gram/bigram features without (a) and with (b) dis-

tant bigram features.

Iteration Training Test

a 1 439.1 470.2
2 182.6 260.0
3 138.2 225.3
4 125.2 217.5
5 120.4 215.2
6 118.6 214.2
7 117.4 213.5
8 117.0 212.8
9 116.8 212.3
10 116.7 211.8

b 0 116.7 211.8
1 86.2 186.5
2 72.7 176.3
3 65.8 171.9
4 62.0 170.2
5 59.8 169.5

5.2. Convergence of the GIS algorithm

We tested how the perplexity goes down with the iterations
of the GIS algorithm. Table 3 shows the perplexity as a
function of the iterations for both the training and the test
set. The parameters of the conventional bigram model were
used to initialize the distant bigram model. We can see that
the models being trained have almost reached the optimum
after 5 { 10 iterations. We make the following remarks:
1. The optimization criterion applies to the training set;

therefore there is no guarantee for convergence on the
test set.

2. Even when considering the training set, we must take in-
to account that the assumptions of the theoretic frame-
work do not apply any more because we use discounted
feature counts. As a result, the perplexity may even go
up again on the training set, which however does not

happen in Table 3.

3. The important result is that the discounting of the fea-
ture counts does not hurt the practical use of the GIS
algorithm.

5.3. Perplexity Results

Table 4 shows a comparison of the test set perplexities for
various types of language models each of which is based
on the same set of the three feature types considered so
far. As an alternative to the maximum entropy approach,
a discounting approach was used also in the experiment
(absolute discounting with interpolation, see [8, 9]). Typ-
ically there is a signi�cant improvement if the convention-
al unigram distribution is replaced by what we refer to as
singleton unigram distribution [5]. Therefore, this variant



Table 4. E�ect of the distant bigram features on the

test set perplexity: a) discountingmodel (SU = sin-

gleton unigram distribution), b) maximum entropy

model.

Distant Bigram Features no yes

Discounting Model 214.7 198.8
Discounting Model with SU 205.4 193.4
Maximum Entropy Model 211.8 169.5

Table 5. Test set perplexities (PP) for the linear

interpolation of the discounting model (with tri-

gram/bigram/unigram features; SU = singleton un-

igram distribution) and the maximum entropy mod-

el (with unigram/bigram/distant bigram features)

Model PP

Discounting Model (with SU) 152.9
Maximum Entropy Model 169.5
Lin. Interpolation of Both Models 144.0

is included in Table 4. For the discounting approach, the
distant bigram features were incorporated by linearly in-
terpolating the corresponding relative frequencies with the
baseline discounting model. From Table 4, we see that the
maximum entropy approach does not make much di�erence
as long as no distant bigram features are used. However,
when these features are added, there is a signi�cant dif-
ference in the perplexities for the discounting model and
the maximum entropy model: the maximum entropy model
reduces the perplexity down to 169.5, which is an improve-
ment by 12.4 % over the best discounting model with a
perplexity of 193.4
In addition, we carried out another experiment in which

we combined the maximum entropy model with a discount-
ing model. Unlike the previous experiment, here the dis-
counting model included trigram features. Table 5 shows
the perplexities for each of the two models and for a linear
interpolation of them. As can be seen, the perplexity of the
trigram discounting model could be decreased from 152.9
to 144.0, which is an improvement by 6.2 %.

5.4. Comparison: Log-linear vs. Additive Model

In [8], the point of view was emphasized that there are many
functional forms for expressing the statistical dependencies
in language modelling. In this view, the log{linear form
is simply one out of many possible forms. Therefore, it is
instructive to compare the functional form of the log{linear
model considered so far with that of an additive model,
which is more commonly used.
Using the interpolation parameters �D and �B, we have

the equation of the additive model:

~p(wju;v) = �D pD(wju) + �B pB(wjv)

+ [1� �D � �B ] pU (w)

with the probability distributions pD(wju); pB(wjv) and
pU (w) for the distant bigram, the bigram and the unigram
features, respectively. This additive model has the same
number of free parameters as the log{linear model. For a
fair comparison with the log{linear model, all these three
distributions must be trained jointly using the EM algo-

rithm. Although the use of the singleton unigram distribu-
tion is a �rst-step into this direction, a systematic compar-
ison has not been done yet.

6. CONCLUSION

In this paper, we have studied some aspects of the maximum
entropy method in the context of language modelling. We
have presented a method for handling unseen features and
discounting the feature counts. The e�ect of this method on
the convergence of the GIS algorithm has been studied ex-
perimentally. In addition to the usual unigram and bigram
features, we have included the distant bigram features. The
resulting maximum entropy language model could signi�-
cantly reduce the perplexity of the conventional discounting
approach.

REFERENCES

[1] A. L. Berger, S. Della Pietra, V. Della Pietra: A
Maximum Entropy Approach to Natural Language
Processing. Computational Linguistics, Vol. 22, No. 1,
pp. 39-71, 1996.

[2] Y. M. M. Bishop, S. E. Fienberg, P. W. Holland: Dis-
crete Multivariate Analysis. MIT press, Cambridge,
MA, 1975.

[3] J. N. Darroch, D. Ratcli�: Generalized Iterative
Scaling for Log{Linear Models. Annals of Mathemat-

ical Statistics, Vol. 43, pp. 1470{1480, 1972.
[4] S. Della Pietra, V. Della Pietra, J. La�erty: Inducing

Features of Random Fields. Technical Report CMU-
CS-95-144, Carnegie Mellon University, Pittsburgh,
PA, 1995.

[5] R. Kneser, H. Ney: Improved Backing-O� for m{
gram Language Modeling. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing, Detroit, MI,
Vol. I, pp. 49-52, May 1995.

[6] J. D. La�erty, B. Suhm: Cluster Expansion and Iter-
ative Scaling for Maximum Entropy Language Mod-
els. In K. Hanson, R. Silver (eds.): Maximum Entropy

and Bayesian Methods, Kluwer Academic Publishers,
1995.

[7] R. Lau, R. Rosenfeld, S. Roukos: Trigger-Based Lan-
guage Models: A Maximum Entropy Approach. Proc.
IEEE Inter. Conf. on Acoustics, Speech and Signal
Processing, Minneapolis, MN, Vol. II, pp. 45-48, April
1993.

[8] H. Ney, U. Essen, R. Kneser: On Structuring Prob-
abilistic Dependences in Stochastic Language Mod-
elling. Computer Speech and Language, Vol. 8, pp. 1-
38, 1994.

[9] H. Ney, F. Wessel, S. Martin: Statistical Language
Modeling Using Leaving-One-Out. In S. Young, G.
Bloothooft (eds.): Corpus-Based Methods in Speech

and Language, pp. 174-207, Kluwer Academic Pub-
lishers, in press, 1996/97.

[10] R. Rosenfeld: Adaptive Statistical Language Mod-

eling: A Maximum Entropy Approach. Ph.D. The-
sis, Technical Document CMU{CS{94{138, Carnegie
Mellon University, Pittsburgh, PA, 1994.


