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ABSTRACT

We propose a new way to model conditional independence
in Markov models. The central feature of our nonuni-
form Markov model is that it makes predictions of vary-
ing lengths using contexts of varying lengths. Experiments
on the Wall Street Journal reveal that the nonuniform
model performs slightly better than the classic interpolated
Markov model of Jelinek and Mercer (1980). This result is
somewhat remarkable because both models contain identi-
cal numbers of parameters whose values are estimated in a
similar manner. The only di�erence between the two mod-
els is how they combine the statistics of longer and shorter
strings.

1. INTRODUCTION

A statistical language model assigns probability to strings of
arbitrary length. Unfortunately, it is not possible to gather
reliable statistics on strings of arbitrary length from a �-
nite corpus. Therefore, a statistical language model must
decide that each symbol in a string depends on at most
a small, �nite number of other symbols in the string. In
this report, we propose a new way to model conditional in-
dependence in Markov models. The central feature of our
nonuniform Markov model is that it makes predictions of
varying lengths using contexts of varying lengths.

We believe that our work has two contributions to of-
fer to the �eld of Markov modeling. The �rst contribu-
tion is our interpretation of the interpolation parameters
as beliefs about conditional independence. Prior work on
interpolated Markov models has interpreted the interpola-
tion parameters as smoothing the \speci�c probabilities"
with the \general probabilities" [6, 8]. Our interpretation
gives rise to the second contribution of our work, namely,
a class of nonuniform Markov models that make predic-
tions of varying lengths using contexts of varying lengths.
Nonuniform predictions is a principled way to perform al-
phabet extension, that is, to make a string become a sym-
bol in the alphabet, an ad hoc technique that can improve
model performance [4].

The remainder of this article consists of four sections.
Section 2. considers two generative interpretations of the
interpolated Markov model: the context model and our
nonuniform model. Section 3. provides a dynamic program-
ming algorithm to evaluate the probability of a string ac-
cording to a nonuniform model, while section 4. provides

an algorithm to optimize the parameters of a nonuniform
model on a training corpus. Section 5. compares the per-
formance of the classic interpolated Markov model and the
nonuniform model on the Wall Street Journal. The nonuni-
form model performs slightly better than the classic model
under equivalent experimental conditions. This result is
somewhat remarkable, since the only di�erence between
these two models is how they interpret the interpolation
parameters.
Let us �rst de�ne our notation. Let A be a �nite alphabet

of distinct symbols, jAj = k, and let xT 2 AT denote an
arbitrary string of length T over the alphabet A. Then x

j

i

denotes the substring of xT that begins at position i and
ends at position j. We abbreviate the unit length substring
xii as xi and the length t pre�x of xT as xt.

2. TWO INTERPOLATED MODELS

Recall that an interpolated Markov model � = hn;A; �; �i

consists of a maximal string length n, a �nite alphabet
A, a set of string probabilities � : A�n ! [0; 1], and the
state-conditional interpolation parameters � : A<n

! [0;1].
Given a string yl, l � n, the string probabilities �(yl) are
typically their empirical probabilities in a training corpus.
We now consider two generative interpretations of the in-

terpolated Markov model: the classic context model and our
nonuniform model. The only di�erence between these two
models will be how the interpolation parameters � are inter-
preted. In each case, we let �pc(ijx

t

t�m+1) be the probability
that we pick a context of length i in the history xtt�m+1

and let �pv(y
j

1jx
t

t�i+1) be the probability that we make a

prediction y
j

1 of length j in the chosen context xtt�i+1.

2.1. Context Model

In the interpolated context model, the interpolation param-
eters are understood as smoothing the conditional prob-
abilities estimated from longer histories with those esti-
mated from shorter histories [6, 8]. Longer histories sup-
port stronger predictions, while shorter histories have more
accurate statistics. Interpolating the predictions from histo-
ries of di�erent lengths results in more accurate predictions
than can be obtained from any �xed history length. This in-
terpretation of the interpolation parameters was originally
proposed by Jelinek and Mercer [6]. It leads to the follow-
ing generation algorithm, where the hidden transition from
a longer context to a shorter context (line 3) is temporary,
used only for the current prediction (line 4).



context-generate(T ,�)
1. Initialize t := 0; x01 := �;
2. Until t = T

3. Pick context length i in [0;min(t; n� 1)]

�pc(ijx
t) = �(xtt�i+1)

Q
i+1

l=min(t;n�1)
(1� �(xtt�l+1))

4. Make one symbol prediction y1

�pv(y
1
jxtt�i+1) = �(y1jxtt�i+1; i+ 1)

5. Extend history xt1 by prediction y1

xt+11 := xt1y
1; t := t+ 1;

6. return(xT );

The probability pc(xijx
i�1; �) assigned by an interpo-

lated context model � to a symbol xi in the history xi�1

has a simple iterative form (1),

pc(xijx
i�1; �) = �(xi�1)�(xijx

i�1)
+(1� �(xi�1))pc(xijx

i�1
2 ; �)

(1)

2.2. Nonuniform Model

We propose to interpret the interpolation parameter �(xi)
as our degree of belief that the next n� i symbols depend
on x1. Our interpretation has two implications. The �rst
implication, as in the uniform model, is that we should tran-
sition from a context xi to its proper su�x xi2 with proba-
bility 1��(xi). This expresses our belief of degree 1��(xi)
that the future does not depend on x1. The second impli-
cation, which is unique to the nonuniform model, is that
we should transition from a shorter prediction yj�1 to a
longer prediction yj in the chosen context xi with proba-
bility �(xiyj�1). This implication follows from our belief
of degree �(xiyj�1) that the future depends on the entire
string xiyj�1 and does not depend on any symbol further
in the past. Our novel interpretation leads to the following
nonuniform generation algorithm.

nonuniform-generate(T ,�)
1. Initialize t := 0; x01 := �;
2. Until t = T

3. Pick context length i in [0;min(t; n� 1)]

�pc(ijx
t) = �(xtt�i+1)

Q
i+1

l=min(t;n�1)
(1� �(xtt�l+1))

4. c := xtt�i+1; jmax := max(n� i; T � t);
5. Pick prediction y

j

1 of length j in [1; jmax]

�pv(y
j

1jc) = (1� �(cyj1))�(yj jcy
j�1
1 ; i+ j)Q

i�1

l=1
�(cyl1)�(yljcy

l�1
1 ; l + i)

where �(cyjmax1 )
:
= 0.

6. Extend history xt1 by prediction y
j

1

x
t+j
1 := xt1y

j

1; t := t+ j;

7. return(xT );

3. EVALUATION

The following dynamic programming algorithm evaluates
the probability of a string xT according to a nonuniform
model � in O(n2T ) time and O(T ) space. The resource
requirements of the algorithm may be reduced to O(nT )
time and O(n) space at a signi�cant expense in clarity [11].
Note that �(xt+jmax

t�i+1 ) = 0 for jmax = min(T � t; n� i).

nonuniform-evaluate(xT ,�)
1. For t = 2 to T [ �t := 0 ]; �1 := 1;
2. For t = 1 to T � 1
3. pc = 1;
4. for i = min(t;n� 1) to 0
5. �pc := �(xtt�i+1)pc; pv := 1;
6. for j = 1 to min(T � t; n� i)
7. �pv := (1� �(xt+j

t�i+1))�(x
t+j
t+1jx

t

t�i+1; i+ j)pv;
8. �t+j := �t+j + �t�pc �pv;
9. pv := �(xt+j

t�i+1)pv;
10. pc := (1� �(xtt�i+1));
11. return(�T );

The �t variable stores the total probability p(xtj�; t) for
the substring xt.

4. DELETED ESTIMATION

In this section, we formulate an expectation maximization
(EM) algorithm for the nonuniform Markov model. Our
development follows the traditional lines established for the
hidden Markov model [2, 3]. We begin by de�ning our for-
ward and backward variables. The forward variable �t(i; j)
contains the probability of generating the �rst t symbols of
the history, picking a context of length i and then making
a prediction of length j, according to the model �.

�t(i; j)
:
= p(h = x

t

1; c = x
t

t�i+1; v = x
t+j
t+1j�; T ) (2)

The following algorithm calculates all �t(i; j) values in
O(n2T ) time and O(n2T ) space.

forward(xT ,�)

1. For j = 1 to n [ �0(0; j) := �pv(x
j

1j�); ];
2. For t = 1 to T

3. �t :=
Pmin(t;n)

j=1

Pmin(n�j;t�j)

i=0
�t�j(i; j);

4. For i = 0 to min(t;n� 1)
5. For j = 1 to min(T � t; n� i)

6. �t(i; j) := �t�pc(ijx
t

1)�pv(x
t+j
t+1jx

t

t�i+1);
7. return(�);

The backward variable �t(i; j) contains the probability of
generating the �nal T � t symbols in the string xT1 , given
that the history is xt1 and that we have chosen to make a
prediction of length j in a context of length i according to
the model �.

�t(i; j)
:
= p(xTt+1jh = xt1; c = xtt�i+1; v = x

t+j
t+1j�; T )

= p(xTt+j+1jx
t+j
1 ; �) = �t+j

(3)
The following algorithm calculates all �t values in O(n2T )
time and O(T ) space. Note that we need only maintain a
one dimensional table of � values because �t(i; j) = �t+j
for all i; j.

backward(xT ,�)
1. �T := 1;
2. For t = T � 1 to 0
3. �t := 0;
4. For i = 0 to min(t;n� 1)
5. For j = 1 to min(T � t; n� i)
6. �t += �pc(ijx

t

1)�pv(x
t+j
t+1jc= xtt�i+1)�t+j;

7. return(�);



The forward and backward variables allow us to e�ciently
calculate the posteriori probability of every hidden transi-
tion in our model, as represented by the following 
t(i; j)
variable.


t(i; j)
:
= p(c = xtt�i+1; v = xt+j

t+1jx
T

1 ; �)
= �t(i; j)�t(i; j)=p(xT1 j�)

(4)

We sum the 
 values to obtain the expected number of
times that the nonuniform model transitioned from a longer
context to a shorter one, or from a shorter prediction to a
longer one. We use two variables to keep track of our ex-
pectations: �+(yl) accumulates the number of times that
we used yl to condition our prediction when it was possi-
ble to do so, while ��(yl) accumulates the number of times
that we could have used yl to condition our prediction but
chose a proper su�x instead. The following algorithm ac-
cumulates all �+(yl) and ��(yl) values in O(n3T ) time and
O(n2T ) space. The full paper [11] presents an alternate ex-
pectation step algorithm that accumulates all expectations
in O(nT ) time and space.

expectation-step(xT ,�,�+,��)

1. � = forward(xT ,�);

2. � = backward(xT ,�);
3. For t = 1 to T � 1
4. For i = 0 to min(t;n� 1)
5. For j = 1 to min(T � t; n� i)
6. �+(xtt�i+1) += 
t(i; j);
7. ��(xt+j

t�i+1) += 
t(i; j);
8. For l = i+ 1 to min(t; n� 1)
9. ��(xtt�l+1) += 
t(i; j);
10. For l = j + 1 to min(T � t; n� i)
11. �+(xt+l

t�i+1) += 
t(i; j);

Having done all the work in the expectation step, the
maximization step is straightforward.

maximization-step(�,�+,��)

1. For all strings yl in A<n

2. ��(yl) := �+(yl)=(�+(yl) + ��(yl));

The following deleted-estimation() algorithm esti-
mates the parameters of an interpolated model � using a
set B of blocks of text. For each iteration, we delete one
block Bi from the set B, initialize the string probabilities
� to their empirical probabilities in the remaining blocks
B � Bi (line 4), and then perform an expectation step on
the deleted block Bi (line 5). After all blocks have been
deleted, we update our model parameters (line 6).

deleted-estimation(B,�)
1. Until convergence
2. Initialize �+; �� to zero;
3. For each block Bi in B
4. Initialize � using B� Bi;
5. expectation-step(Bi,�,�

+,��);

6. maximization-step(�,�+,��);
7. Initialize � using B;

5. EXPERIMENTAL RESULTS

In this section we compare the performance of the interpo-
lated context model and the nonuniform model on the Wall
Street Journal. (Recall that the interpolated context model
is the classic interpolated Markov model of Jelinek and Mer-
cer [6].) We performed two sets of experiments. The �rst
set of experiments was with the 6.2 million word WSJ 1989
corpus. The goal of these initial experiments was to bet-
ter understand how initial parameter values a�ect model
performance. The second set of experiments was with the
42.3 million word WSJ 1987-89 corpus. In order to assess
the possible value of our language models to speech recog-
nition, we used verbalized punctuation and a vocabulary
of approximately 20,000 words chosen from both training
and test sets. All out-of-vocabulary words were mapped to
a single unique OOV symbol. In all experiments we used
90% of the corpus for training and 10% for testing. No pa-
rameter tying or parameter selection was performed. We
report performance as test message perplexity.
We set the � parameters to be the empirical probabilities

in the training data and then optimized the � parameters
on the training data using deleted estimation [6, 1]. We
report the best numbers for each model, as though an or-
acle told us when to stop running deleted estimation. We
considered three initial estimates for the � parameters: the
uniform estimate 0.5, the Je�reys-Perks rule of succession
[5, 9, 7], and the natural law of succession [10]. Je�reys-
Perks assigns relatively low probability to �(xi), while the
natural law assigns relatively high probability to �(xi). The
best performance for higher model orders was achieved with
uniform initialization in all of our experiments, both before
and after optimization via deleted estimation. Regardless
of how the � parameters were initialized, the nonuniform
model performed slightly better than the classic interpo-
lated context model under equivalent experimental condi-
tions.

5.1. WSJ 1989

The �rst set of experiments was on the 1989 Wall Street
Journal corpus, which contains 6,219,350 words. Our vo-
cabulary consisted of the 20,293 words that occurred at
least 10 times in the entire WSJ 1989 corpus. The goal
of these initial experiments was to better understand how
initial values a�ect model performance.

5.1.1. Before Optimization

The following table reports test message perplexities for
WSJ 1989 before the � parameters were optimized using
deleted interpolation. The best results for both models are
obtained when the � parameters are initialized uniformly.
Before optimization the interpolated context model per-
forms better than the nonuniform model.

Context Model

N Je�rey-Perks Natural Law 0.5

2 284.9 188.2 215.9

3 248.1 148.7 136.0

4 241.6 155.0 130.0

5 239.6 161.7 131.3

6 238.7 165.7 132.6



Nonuniform Model

N Je�rey-Perks Natural Law 0.5

2 276.8 197.6 209.6

3 235.8 175.4 138.4

4 229.3 196.3 138.3

5 227.6 211.4 142.6

6 226.9 219.4 145.2

5.1.2. After Optimization

The following table reports test message perplexities for
WSJ 1989 after optimization via deleted estimation. All
models were trained using deleted estimation with 22 blocks
on the �rst 90% of the corpus and then tested on the re-
maining 10% of the corpus. The nonuniform model slightly
outperforms the context model for n > 3. The best results
for both models are obtained when the � parameters are ini-
tialized uniformly. The nonuniform model is less sensitive
to the initial � estimates than the context model.

Context Model

N Je�rey-Perks Natural Law 0.5

2 175.3 175.2 175.2

3 122.1 121.8 121.2

4 115.8 115.9 114.0

5 114.5 115.4 112.6

6 114.1 115.6 112.3

Nonuniform Model

N Je�rey-Perks Natural Law 0.5

2 177.7 177.6 177.7

3 121.6 121.6 121.2

4 113.6 114.1 113.2

5 111.9 113.0 111.4

6 111.5 112.9 111.0

5.2. WSJ 1987-89

The second set of experiments was on the 1987-89 Wall
Street Journal corpus, which contains 42,373,513 words.
Our vocabulary consisted of the 20,092 words that occurred
at least 63 times in the entire WSJ 1987-89 corpus. The goal
of these experiments was to produce competitive results for
the context model, in order to compare those results to
those achieved by the nonuniform model.

5.2.1. Before Optimization

The following table reports test message perplexities for
WSJ 1987-89 before optimization via deleted estimation.
All � values were initialized uniformly.

N Context Model Nonuniform Model

2 198.2 190.1

3 107.5 106.1

4 97.7 100.4

5.2.2. After Optimization

The following table reports test message perplexities for
WSJ 1987-89 after optimization via deleted estimation. All
� values were initialized uniformly, trained using deleted
estimation with 152 blocks on the �rst 90% of the corpus,
and then tested on the remaining 10% of the corpus. The
nonuniform model performs slightly better than the context
model for n > 2.

N Context Model Nonuniform Model

2 150.7 151.7

3 93.4 93.3

4 85.7 84.4

6. CONCLUSION

We have proposed a nonuniform Markov model, that makes
predictions of varying lengths using contexts of varying
lengths, and demonstrated that the nonuniform model
slightly outperforms the interpolated context model on nat-
ural language text. This result is somewhat remarkable
when we consider that both models are based on the statis-
tics of �xed-length strings, and that both models contain
identical numbers of parameters whose values are estimated
using deleted estimation. The only di�erence between the
two models is how they combine the statistics of longer and
shorter strings.

REFERENCES

[1] Bahl, L. R., Brown, P. F., de Souza, P. V., Mercer,

R. L., and Nahamoo, D. A fast algorithm for deleted in-

terpolation. In Proc. EUROSPEECH '91 (Genoa, 1991),

pp. 1209{1212.

[2] Baum, L., and Eagon, J. An inequality with applica-

tions to statistical estimation for probabilistic functions of

a Markov process and to models for ecology. Bull. AMS 73

(1967), 360{363.

[3] Baum, L., Petrie, T., Soules, G., and Weiss, N. A max-

imization technique occurring in the statistical analysis of

probabilistic functions of Markov chains. Ann. Math. Stat.

41 (1970), 164{171.

[4] Jeanrenaud, P., Eide, E., Chaudhari, U., McDonough,

J., Ng, K., Siu, M., and Gish, H. Reducing word error

rate on conversational speech from the Switchboard corpus.

In ICASSP 95 (1995), pp. 53{56.

[5] Jeffreys, H. An invariant form for the prior probability

in estimation problems. Proc. Roy. Soc. (London) A 186

(1946), 453{461.

[6] Jelinek, F., and Mercer, R. L. Interpolated estima-

tion of Markov source parameters from sparse data. In

Pattern Recognition in Practice (Amsterdam, May 21{23

1980), E. S. Gelsema and L. N. Kanal, Eds., North Holland,

pp. 381{397.

[7] Krichevskii, R. E., and Trofimov, V. K. The perfor-

mance of universal coding. IEEE Trans. Information The-

ory IT-27, 2 (1981), 199{207.

[8] MacKay, D. J., and Peto, L. C. B. A hierarchical Dirich-

let language model. Natural Language Engineering 1, 1

(1994).

[9] Perks, W. Some observations on inverse probability, in-

cluding a new indi�erence rule. J. Inst. Actuar. 73 (1947),

285{312.

[10] Ristad, E. S. A natural law of succession. Tech. Rep. 495-

95, Department of Computer Science, Princeton University,

Princeton, NJ, May 1995.

[11] Ristad, E. S., and Thomas, R. G. Nonuniform Markov

models. Tech. Rep. 536-96, Department of Computer Sci-

ence, Princeton University, Princeton, NJ, November 1996.


