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ABSTRACT

A new technique for modelling word occurrence correlations
within a word-category based language model is presented. Em-
pirical observations indicate that the conditional probability of a
word given its category, rather than maintaining the constant value
normally assumed, exhibits an exponential decay towards a con-
stant as a function of an appropriately defined measure of sepa-
ration between the correlated words. Consequently a functional
dependence of the probability upon this separation is postulated,
and methods for determining both the related word pairs as well
as the function parameters are developed. Experiments using the
LOB, Switchboard and Wall Street Journal corpora indicate that
this formulation captures the transient nature of the conditional
probability effectively, and leads to reductions in perplexity of be-
tween 8 and 22%, where the largest improvements are delivered
by correlations of words with themselves (self-triggers), and the
reductions increase with the size of the training corpus.

1. INTRODUCTION
Language models based onn-grams of word-categories are in-

trinsically more compact than their word-based counterparts, and
are truly able to generalise to unseen word sequences [4]. How-
ever their inability to model relationships between particular words
limits their performance and prevents them from exploiting large
training sets.

The category-based models in question employ variable-
length word-categoryn-grams1 [4], and in this work the categories
correspond to part-of-speech classifications as defined in the LOB
corpus [1]. Words may belong to multiple categories, and conse-
quently the model bases its probability estimates on a set of pos-
sible classifications of the word history into category sequences.
Each such classification has an associated probability, and is up-
dated recursively for each successive word in a sentence during
operation of the model. An underlying assumption is that the prob-
ability of a word depends only upon the category to which it be-
longs, and therefore its occurrence is equally likely at any point
in a corpus at which this category occurs. Factors such as the
topic and style of the text cause certain words to occur in groups,
however, thereby violating this assumption. This paper presents a
technique by means of which this is taken into account by explicit
modelling of the transient nature displayed by the probabilities of
correlated words as a function of the separation between them.

2. TERMINOLOGY
Let w(i) andv(i) denote theith word in the corpus and its

category respectively, whilewj andvk denote a particular word
and category from the lexicon2, wherej 2 0 : : : Nw � 1 and
k 2 0 : : : Nv � 1, (wj ; vk) is a valid word-category pair from
the lexicon, andNw andNv are the number of different words and
categories respectively.

1Referred to as “varigram” models hereafter
2The possible category assignments for each word in the vocabulary.

Now consider the effect which the occurrence of atrigger
word (wtrig; vtrig) has on the subsequent probability of occur-
rence of atarget word (wtarg; vtarg). Define the distanced be-
tween this trigger-target pair to be the number of times a word
belonging to categoryvtarg is seen after witnessing the trigger
and before the first sighting of the target itself, so thatd 2

f0; 1; 2; 3; : : : ;1g. This definition of distance between the trigger
and the target has been employed as a way of minimising syntactic
effects on word co-occurrences, notably the phenomenon that cer-
tain categories very rarely follow certain others. Syntactic effects
should be reduced as much as possible since they are already mod-
elled by the categoryn-gram component of the language model.

In the following a distinction will be drawn between the case
where trigger and target are the same word (termedself-triggers)
and the case where they differ (referred to astrigger-target pairs).

Word-pairs have been combined with wordn-gram language
models both within a maximum-entropy framework [6] and by lin-
ear interpolation [3]. The development here differs by taking ex-
plicit account of the distance between word occurrences, and by
taking specific advantage of the category-based model.

3. PROBABILISTIC FRAMEWORK

Let the assumption that the probability of a wordw(i) depends
only uponv(i) be referred to as theindependence assumption, and
for a particular word let this fixed probability bep (wj jvk) = Pw.
Empirical investigation ofp (wj jvk) as a function of the distanced
reveals an exponential decay towards a constant for words between
which a recency relationship exists. Figure 1 illustrates this for the
case where the trigger is the titular noun “president” and the target
the proper noun “congress”. Data is drawn from the WSJ0 corpus
(refer to section 5) and the probabilityPw is shown.
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Figure 1: MeasuredP (wj jvk; d)



This transient behaviour displayed in this graph is typical, and
has motivated the following postulate:

p(wj jvk; d) = Pb +  � e
���d (1)

which is an exponential decay towards a constant probabilityPb,
 and� defining the strength and rate of decay respectively. As-
suming that the triggers occur independently with probabilityPa,
it follows that the probability mass functionp(d) for the target oc-
currence after sighting the trigger is given by :

p(d) = � �
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�!
�
�
Pb +  �e

���d
�

(2)

The normalising constant� accounts for the probability mass
associated with cases in which a trigger follows another trigger
before sighting the target.

The empirical estimates of figure 1 have been obtained by bin-
ning counts over the graphed distance range. From a storage point
of view the potentially extremely large number of word-pair rela-
tions however make this approach infeasible for large-scale appli-
cation, and hence it is not possible to estimate the parameters of
equation (1) from a direct fit to the data. The estimation ofPb and
then of and� is treated in the following two sections.

3.1. EstimatingPb

The probabilityPb may be estimated from the tail of the distri-
bution, where the transient effect of the exponential term in (1) is
assumed to be insignificant. Were the trigger and target to occur
independently, their separating distance would have a geometric
distribution, and we use its mean�g as a rough estimate of the
actual mean :

�g =
Ntc �Ntt

Ntt

where
Ntt =N(wtrig; vtrig) +N(wtarg; vtarg)

and

Ntc = N(vtarg) or Ntc = N(vtarg) +N(wtrig; vtrig)

when the trigger and target belong to the same or different cate-
gories respectively, and whereN(wtrig; vtrig), N(wtarg; vtarg)
andN(vtarg) are the number of times the trigger word, the target
word, and the target category each appear in the training corpus.

Pb is estimated using counts of all trigger-pair occurrences
with distances beyond this mean, i.e.:

Pb =
N(wj ; vk)jd>�g

N(vk)jd>�g
(3)

where the numerator and denominator on the right hand side
are the respective number of times the target word-category pair
(wtarg; vtarg) and the target categoryvtarg have been seen at dis-
tances exceeding�g.

3.2. Estimating and �
Expressions allowing the determination of and� from the

mean and mean-square distances separating trigger and target have
been derived. Since mean and mean-square calculation requires
little storage, this represents a memory-efficient alternative to a

direct fit of the conditional probability function (1) to measured
binned data. Two successive functional approximations of equa-
tion (2) are made, the first usinglog(1 + x) � x to find that [5]:

p(d) � ~p(d) = ��
�
Pb +  �e

���d
�
�(1�Pa�Pb)

d
��

1�e���d (4)

where

� = e
�

(1�Pa�Pb)�(1�e
��) (5)

This approximation is good while 

1�Pa�Pb
� 1, which is

true whenPa � 1, Pb � 1 and � 1, as may be expected for
content words. As a second step, (4) is approximated by:

p̂(d) = ��
�
�1 �(1� P1)

d
�P1 + �0 �(1� P0)

d
�P0

�
(6)

where

� (�1 + �0) = 1 (7)

The functional form of (6) has the following motivations:

� As the superposition of two geometric terms, it retains the
overall geometric character exhibited empirically.

� The faster geometric component should model the initially
more rapid decay of the observed distribution (which is in turn
due to the higher conditional probability at smalld).

� The slower geometric component should model the tail of the
observed distribution.

� Closed form expressions for the mean and mean-square exist.

Now by imposing the constraint

lim
d!1

~p(d) = lim
d!1

p̂(d)

we find from (4) and (6) that :

P0 = Pa + Pb and �0 =
Pb � �

Pa + Pb
(8)

Furthermore, requiring~p(0) = p̂(0) we find from (4) and (6) that:

P1 =
Pb +  � �0 � P0

�1
(9)

and finally, requiring~p(1) = p̂(1) we find that:

P1 = 1� (1�P0) � e

�
��[(Pb+)�ln(�)�]

Pb+�Pb��

�
(10)

The values ofPa andPb are known, and in order to solve
for �0, �1  and � from the above equations, the meand and
mean-squared2 distance of the distribution are employed. How-
ever, when estimated from data these quantities have been found
to be particularly sensitive to outliers, in particular trigger and tar-
get words separated by large quantities of text and occurring in
unrelated parts of the training corpus. Robustness is significantly
improved by measuring the mean and mean-square within only a
predetermined range of distances,d 2 f0 � � �N � 1g. Refer to
these astruncated mean and mean-square estimates, and denote
them byd(N) andd2(N) respectively. Since equation (6) is the



superposition of two geometric terms, we may express the trun-
cated mean and mean-square as a linear combination of the corre-
sponding terms for truncated geometric distributions (refer to the
appendix):

d(N) = � � [�1 ��(P1; N) + �0 ��(P0; N)] (11)
and

d2(N) = � � [�1 ��(P1; N) + �0 ��(P0; N)] (12)

Equations (5), (7), (8), (9), (10), (11) and (12) relatePa, Pb,
 and� to �0, �1, �, d(N) andd2(N), and may be used to deter-
mine and� given the measured valuesPa,Pb, d(N) andd2(N).
However, since it is not possible to do this analytically, these val-
ues are determined numerically.

3.3. Typical estimates
Figure 2 repeats the curves of figure 1, and adds the plot of

equation (1) using the parametersPb,  and� determined from the
results of sections 3.1 and 3.2. The estimated conditional proba-
bility reflects the true nature of the data much more closely than
the constant valuePw used under the independence assumption.
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Figure 2: Measured and estimatedP (wj jvk; d)

4. DETERMINING TRIGGER-TARGET PAIRS

While the number of possible self-triggers is bounded by the
vocabulary size, the number of potential trigger-target pairs equals
the the square of this number, and it is not possible to consider
these relations exhaustively except for very small vocabularies. In
order to identify suitable candidates in a feasible manner, an ap-
proach employing two passes through the training corpus has been
developed [5]. The first pass identifies promising candidates by
dynamically adding new contenders to a tentative list, and conse-
quently updating their mean distances. At each update a t-test is
performed, determining to a desired level of confidence whether
the measured mean is lower than would be expected were the can-
didates to occur independently. These tests allow unpromising
candidates to be pruned continually from the tentative list, and ad-
justment of the relevant pruning thresholds and confidence levels
allows the rate of new acquisitions to be balanced against the rate

at which unpromising relations are discarded, thereby avoiding the
explosion in the number of considered word-pairs that would oth-
erwise arise. During the second pass, each surviving pair is recon-
sidered by calculating its mean and mean-square distances over the
entire training corpus, and executing a second t-test at completion
to determine whether a the candidate relation should ultimately be
retained or discarded. Finally, the values of the parametersPb, 
and� are calculated for each remaining trigger-target pair.

The following table lists some examples of typical targets and
their triggers as found by the described technique when applied to
the LOB corpus. The bracketed designations are the grammatical
categories of the words in question3. It is appealing to find such
intuitive relationships in meaning between word pairs gathered ac-
cording to purely statistical criteria.

Target Triggers

discharged (JJ) prison (NN), period (NN),
supervision (NN), need (NN),
prisoner (NN), voluntary (JJ),
assistance (NN)

advocate (NN) truth (NN), box (NN), defence (NN),
honest (JJ), face (VB), case (NN),
witness (NN), evidence (NN)

Cambridge (NP) university (NN), educational (JJ),
affected (VBN), Oxbridge (NP),
tomorrow (NR), universities (NNS)

worked (VBN) demand (NN), changes (NNS),
cost (NN), strength (NN)

Table 1: Triggers and targets collected from the LOB corpus

5. PERPLEXITY RESULTS

The benefit of characterising trigger pairs as described in the
previous sections was gauged by comparing the performance of a
category-based language model employing the independence as-
sumption with another using equation (1) but identical in all other
respects. Experiments were carried out on the LOB, Switchbaord
(SWBD) and Wall-street Journal (WSJ0) corpora, category-based
language models having been constructed for each using a pruning
threshold of 5e-6 during construction of the variable-length cate-
gory n-grams [4]. The following table gives a brief description of
each corpus, whereNtrn andNtst refer to the number of words in
the training- and test-sets respectively.

Corpus Source Ntrn Ntst

LOB Various (e.g. news, fiction etc.) 1.0 M 56K

SWBD Telephone conversations 1.9 M 10K

WSJ0 Wall Street Journal (87-89) 37 M 92K

Table 2: Summary of the LOB, Switchboard and WSJ0 corpora

The details of the language models constructed for each of
these corpora are summarised in table 3. Information for a stan-
dard trigram language model using the Katz backoff and Good-
Turing discounting [2] is given in order to establish a baseline.
The symbolsNv , Nwng andNcng refer to the number of words

3JJ = adjective, NN = common noun, NNS = plural common noun,
NP = proper noun, NR = singular adverbial noun, VB = verb base form,
VBN = past participle.



in the vocabulary, the number ofn-grams in the trigram, and the
number ofn-grams in the category language model respectively,
while Nst Ntt are the number of self-triggers and trigger-target
pairs for which parameters were estimated.

Corpus Nv Nwng Ncng Nst Ntt

LOB 41K 1.14M 44,380 14,295 4,427

SWBD 23K 1.18M 54,547 8,615 4,262

WSJ0 65K 13.05M 174,261 56,928 133,608

Table 3: Language models for LOB, Switchboard and WSJ0.

Table 4 shows the trigram (TG) and varigram model per-
plexities, where the abbreviations “VG”,“VGST”, “VGTT” and
“VGSTTT” refer to the varigram by itself, with self-triggers, with
trigger-target pairs and with both self-triggers and trigger-target
pairs respectively.

Corpus TG VG VGST VGTT VGSTTT

LOB 413.1 458.3 412.2 458.09 412.2

SWBD 96.6 145.3 134.1 143.70 133.4

WSJ0 132.2 469.4 381.0 441.40 366.6

Table 4: Perplexities for the LOB, Switchboard and WSJ0 corpora

6. DISCUSSION

The largest perplexity improvement is obtained for the WSJ0 cor-
pus, which also has the largest number of self-trigger and trigger-
target pairs. This stems from the much greater corpus size and
consequent lower sparseness. For LOB and SWBD, on the other
hand, many words occur too infrequently to make estimation of
the conditional probability parameters possible, thus leading to a
reduced number of trigger pairs.

For all three corpora, the addition of self-triggers has a more
significant impact on the perplexity than does the introduction of
trigger-target pairs. Self-triggers seem more reliable since the tar-
get, being its own trigger, is actually seen before being predicted to
occur again. Trigger-target pairs, on the other hand, predict words
that have either not yet been seen at all or have occurred in the
distant past. Since such correlations are heavily dependent upon
the topic of the passage, the effectiveness of a trigger-target asso-
ciation depends on how much the topics associated with a trigger
coincide between the training- and test-set. For the LOB corpus,
which is very diverse in the material it contains, there is a signif-
icant mismatch in this regard, leading to the observed very small
impact of self-triggers on performance, while for the WSJ corpus
the mismatch is smaller, leading to greater success.

The addition of the self-triggers increases the number of pa-
rameters in the model by2 � Nst (storage of and�). This in-
crease is mild, and offers a favourable size versus performance
tradeoff. For instance, the varigram with self-triggers for LOB
uses 58,675 parameters and achieves a lower perplexity than the
trigram with 1.1 million parameters. Furthermore, the effective-
ness of both types of word-pair modelling improves with corpus
size, and since the parameter determination and final implemen-
tation of the model has low memory requirements, the technique
is suitable for use with large training sets. This complements the
category-based model, whose performance does not improve in the
same way.

Finally, inspection of the values of� assigned to trigger-target
pairs, as well as cases in which a trigger successfully predicts a

target show that correlations well beyond the range of conventional
n-gram models are captured, and therefore the proposed technique
is indeed able to model long-range dependencies.

7. CONCLUSION
A new technique for modelling the empirically observed tran-

sient character of the occurrence probability between related words
in a body of text has been introduced. Procedures both for the
identification of such word pairs as well as for the estimation
of the three parameters required by the parametric model have
been developed. Experiments demonstrate that meaningful rela-
tions are indeed identified, and that the transient behaviour (which
often spans many words) is successfully captured by the pro-
posed model. Perplexity reductions of between 8 and 22% were
achieved, where the greatest improvement seen was for the largest
and least-sparse corpus, and the most significant impact on perfor-
mance was displayed by word correlations with themselves (self-
triggers). The modelling technique is able to reduce the perfor-
mance limit displayed by category-based models for large corpora,
thereby improving their good performance versus size tradeoff.

8. APPENDIX
Assuming a limited ranged 2 f0 � � �N � 1g with constant

probability of successPx at eachd, the probability density func-
tion over this range is :

P (d) =
(1�Px)

d � Px

1�(1�Px)N

for which the moment generating function is:

Md(t) =
Px �(1�(et �(1�Px))

N
)

(1�(1�Px)N � (1�et �(1�Px))

and from which straightforward algebra leads us to expressions for
the mean�(Px; N):

�(Px; N) =
(1�Px)

�
1 + [(N�1)(1�Px)�N ]�(1�Px)

(N�1)
�

Px � (1� (1�Px)N )

A similar but cumbersome development leads to an expression
for the mean-square�(Px; N) [5].
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