
LANGUAGE MODEL ADAPTATION USING MIXTURES AND AN

EXPONENTIALLY DECAYING CACHE

P.R. Clarkson A.J. Robinson

Cambridge University Engineering Department,
Trumpington Street, Cambridge, CB2 1PZ, UK.

fprc14,ajrg@eng.cam.ac.uk

ABSTRACT

This paper presents two techniques for language model
adaptation. The �rst is based on the use of mixtures of
language models: the training text is partitioned according
to topic, a language model is constructed for each compo-
nent, and at recognition time appropriate weightings are
assigned to each component to model the observed style
of language. The second technique is based on augment-
ing the standard trigram model with a cache component in
which words recurrence probabilities decay exponentially
over time. Both techniques yield a signi�cant reduction in
perplexity over the baseline trigram language model when
faced with multi-domain test text, the mixture-based model
giving a 24% reduction and the cache-based model giving a
14% reduction. The two techniques attack the problem of
adaptation at di�erent scales, and as a result can be used
in parallel to give a total perplexity reduction of 30%.

1. INTRODUCTION

In constructing a language model intended for general text,
one is faced with the following problem. One can either
generate a model which is trained on material from a spe-
ci�c domain, with the result that the model's performance
will be good for text from the same domain, but poor for
more general text, or one can train the model on text from
many diverse sources, which will perform better on general
text, but will not be especially well suited for any particular
domain.

Clearly, the ideal would be a general language model whose
parameters could be automatically tuned according to the
style of text it is attempting to model.

Two methods of achieving this will be presented here. The
�rst is a mixture-based approach. The training text is parti-
tioned according to the style of text, and a trigram language
model is constructed for each component1. Each compo-
nent is assigned a weighting according to its performance
at modelling the observed text, and a �nal language model
is constructed as the weighted sum of each of the mixture
components.

The second approach is based on a cache of recent words.
Previous work has shown that words that have occurred

1In this paper a trigram language model refers to a back-
o� trigram language model with a vocabulary of 65;000 words,
employing Turing-Good discounting [5], and with both bigram
and trigram cut-o�s set to 1.

recently have a higher probability of occurring in future
than would be predicted by a static trigram language model
[6, 7]. This work investigates the hypothesis that more re-
cent words should be considered more signi�cant within the
cache by implementing a cache in which a word's contribu-
tion to its recurrence probability decays exponentially with
its distance from the current word.

The corpus used for this work was the British National
Corpus (BNC) [1]. This contains 4142 di�erent \texts",
each from a di�erent source, and covering diverse topics and
styles of language. The corpus comprises 100 million words
of British English, 10% of which is transcribed speech, and
the remainder consists of written language.

From this corpus, 90% (from both the spoken and written
components) was used for the purposes of constructing the
language models, the rest being reserved as test data. The
held-out 10% was taken from random points throughout the
corpus.

2. MIXTURE-BASED LANGUAGE MODELS

2.1. Framework

For this model, general language model training data is par-
titioned according to topic, and a trigram language model is
constructed for each component. Weightings are assigned to
each language model according to its performance at mod-
elling the previously seen text, and the word probabilities
used by the �nal model are then simply a linear combination
of those from the smaller language models, i.e.

P (wi j wi�2; wi�1) =

kX

j=1

�jP (wi j wi�2; wi�1;Mj)
(1)

where k is the number of mixtures, �j is the weighting as-

signed to model j,
Pk

j=1
�j = 1, and Mj represents the

parameters of model j.

While splitting the training text into smaller sections in-
creases the problems of data sparsity that plague all work
in language modelling, the results presented here show that
the bene�ts of having a language model which more closely
matches the target domain outweigh this problem. Fur-
thermore, by including the \full" language model (i.e. one
trained on the full set of training data) as an additional
mixture component, we can reduce the problems caused by
data sparsity.

2.2. Partitioning the training data

The training data is partitioned such that each text within
the training set is assigned to a cluster. A simple k-means
style clustering algorithm is used. The \distance" between
a text and a cluster is de�ned as being the perplexity of a
language model constructed from the text within the clus-
ter with respect to the text. Ideally this would be based
on a trigram language model in order to maintain consis-
tency with the language models being constructed. Uni-
gram language models were used here, however, to keep the
computational requirements to a practical level.

The BNC assigns a tag to each piece of text in the written
component indicating its subject. There are nine tags, rang-
ing from \Imaginative" to \Pure and Natural Science". By
partitioning the written component of the corpus according
to these tags, and by considering the spoken component
as an additional component, we have a manually generated
partition of ten components that can be compared with the
automatically generated ones.

2.3. Assigning weights to mixtures

Given a (totally or partially correct) transcription of the
previously seen section of the text to which we are aiming
to tune our language model, we can compute the probabil-
ity of each word in this section of the text according to the
language model of each component, thus generating a prob-
ability stream for each language model. From these prob-
ability streams we can use an Expectation-Maximisation
(EM) algorithm [4] to generate a set of weights (the �js
in (1)) which are optimal for the previously seen section
of text. It is to be hoped that this set of weights will be
similarly good for upcoming text.

Ideally, the interpolation weights should be updated after
every word, but the process of calculating weightings is too
computationally expensive for this to be practical, so we
instead update the weights after every 10% of each text in
the test set.

2.4. Results

The results given in Table 1 show the perplexities for
mixture-based language models based on 5, 10, 20, 30, 40
and 50 clusters. Note that the automatically generated par-
tition into 10 clusters performs better that the manually
generated BNC clustering, and that the inclusion of the
\full" language model gives a greater gain as the number of
mixtures increases, and the individual models become more
under-trained.

The best performance was achieved using 50 mixtures plus
the full language model, when there was a decrease in per-
plexity of 24:0%.2

3. CACHE BASED MODELS

3.1. Framework

It is a commonly observed phenomenon that words which
have occurred recently in a piece of text have a higher prob-

2The amount of memory and CPU time required by these
languagemodels increases exponentiallywith the number of mix-
tures. It has so far proved impossible to build language models
based on more than 50 mixtures.

Number of Perplexity
clusters With full LM W/out full LM

0 (Baseline) 165.52 -
5 141.17 143.23
10 134.30 138.24

10 (BNC) 139.24 142.87
20 129.09 134.42
30 126.77 134.14
40 127.52 135.48
50 125.78 134.91

Table 1. The perplexities of mixture-based language models

ability of re-occurring [6]. This is the motivation behind
cache-based language models. We store a cache of recently
occurring words, and boost their probabilities within the
language model:

P (wi j w1; w2; : : : wi�1) = �Pcache(wi j w1; w2; : : : wi�1)

+ (1� �)Ptrigram(wi j wi�2; wi�1) (2)

Much previous work on cache-based language models has
de�ned

Pcache(wi j wi�K; wi�K+1; : : : wi�1) =

Number of occurrences of wi in cache

K
(3)

where K is the size of the cache.

This approach, however, has some clear drawbacks. It
seems implausible, for example, that a word's importance
within the cache is independent of its distance from the cur-
rent word; one would expect that more recent words should
contribute more to the cache probability.

A cache component was investigated in which the impor-
tance of each position in the cache decays exponentially
with distance from the current word, i.e.

Pcache(wi j w1; w2; : : : ; wi�1) =

�

i�1X

j=1

Ifwi=wjge
��(i�j) (4)

where I is an indicator function such that IA = 1 if A is true,
and 0 otherwise, � is the decay rate and � is a normalising
constant3.

Both \regular" (equation (3)) and \decaying" (equa-
tion (4)) cache-based language models were investigated.
In both cases the interpolation weights (i.e. the values of �
in equation (2)) were calculated in exactly the same way as
those for the mixture-based language models (Section 2.3).

3The size of the cache is no longer an issue; words which
occurred many words ago make such a small contribution to the
cache probabilities that they can essentially be ignored. We can
thus consider the cache size as in�nite.

That is, the EM algorithm was used to calculate the op-
timal choice for � based on the previously seen section of
text, and the weights were updated after every 10% of each
text.

3.2. Results

Table 2 shows the perplexities of regular cache-based lan-
guage models with various cache sizes, and Figure 1 shows
the perplexities of decaying cache-based language models
with various decay rates. It can be seen that the regular
cache performs best with a cache size of 500, and that the
decaying cache performs better than the standard cache,
with the best performance being given by a decay rate of
0:005, when the perplexity is 141:75. This represents a
14:4% reduction from the baseline.

Size of Cache Perplexity
50 152.59
100 148.33
200 145.83
500 144.73
1000 144.98
2000 145.56

Table 2. The perplexities of regular cache-based models

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
141.5

142

142.5

143

143.5

144

144.5

145

Decay Rate

P
er

pl
ex

ity

Figure 1. The e�ect of decay rate on the perplexity of decaying
cache-based language models

4. COMBINING TECHNIQUES

The cache-based model attempts to model the short-term

uctuations in word probabilities by boosting the probabil-
ities of a small set of words, whereas the mixture-based ap-
proach seeks to tune the entire language model toward the
general topic of discourse. Because these two techniques
tackle the problem of adaptation at di�erent scales, they
may be usefully combined to give an even greater reduction
in perplexity.

A language model was constructed based on a combina-
tion of the two techniques presented here. A mixture-based
language model based on 30 mixtures (plus the \full" lan-
guage model) was combined with a decaying cache compo-
nent with a decay rate of 0:005. That is

P (wi j w1; w2; : : : ; wi�1) =

�Pmixture(wi j wi�2; wi�1) +

(1� �)Pcache(wi j w1; w2; : : : ; wi�1) (5)

The interpolation weight � was, as before, calculated by EM
to minimise the perplexity of the previously seen text, and
updated after every 10% of each text.

The resulting language model had a perplexity of 115:86,
which represents a decrease of 30:0% over the baseline lan-
guage model.

5. RESULTS BASED ON IMPERFECT
TRANSCRIPTION

The results given in Section 2.4 are based on mixture
weightings which are calculated using a perfect transcrip-
tion of the observed text, and those in Section 3.2 are based
on the assumption that every word in the cache is correct.
Clearly, if these language models were used in an automatic
speech recognition (ASR) system, then a perfect transcrip-
tion would not be available. An experiment was conducted
in which the text used to compute the mixture weightings
and the cache-based probabilities had been \corrupted" by
substituting a proportion of words with words chosen at
random from the vocabulary.

Figure 2 shows the e�ect of the degree of corruption (i.e.
the proportion of words which have been replaced with a
random selection from the vocabulary) on the performance
of both mixture- and cache-based language models. Two
mixture-based language models were used, both based on
30 mixture components, one included the \full" model as an
additional component, the other did not. The cache-based
model was based on a decaying cache with a decay rate of
0:005.

Decaying cache

Mixtures − with full

Mixtures − w/out full

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
120

140

160

180

200

220

240

260

Degree of corruption

P
er

pl
ex

ity

Baseline

Figure 2. The e�ect of transcription error rate on perplexity

It can be seen that the cache-based model performs bet-
ter than the baseline trigram model providing that no more
than 30% of the words in the hypothesis are incorrect, and
that the mixture-based models yield an improvement pro-
viding that the error rate is lower than 50%. The addition of
the \full" component to the mixture-based language model

becomes less useful as the hypothesis becomes more cor-
rupted because the \full" language model is no better (in
fact worse) at modelling random data than the smaller lan-
guage models, and so its weighting becomes very close to
zero.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented two techniques for language model
adaptation, both of which result in a signi�cant reduction
in perplexity over the standard trigram model. In addition,
we have shown that the techniques can continue to be useful
when the hypothesised transcription which forms the basis
for adaptation has been somewhat corrupted. The hope is
that if these techniques were used in a speech recognition
system, they would result in a useful reduction in word
error rate. Future work should therefore be focussed on
incorporating these adaptive language models in an ASR
system.

It is unlikely to be practical, however, to require a speech de-
coder to access many individual language models, because
of the large amount of memory required to store each of
them. Therefore a one-pass approach to recognition us-
ing a mixture-based language model is out of the question
and we must instead evaluate these language models us-
ing lattice (or N -best) re-scoring. This has advantages and
disadvantages. In many ways these adaptation techniques
are ideally suited to the sort of two-pass approach used in
lattice re-scoring. In the case of mixture-based models, the
mixture weights can be based on a complete transcription
right from the start, as opposed to the incomplete transcrip-
tion used here in the perplexity calculations. Similarly, the
cache need not be based solely on words in the past, but
can use information from future sentences too. The disad-
vantage, however, is that lattice re-scoring must take place
on a short-scale (essentially sentence-by-sentence) basis if
the lattices are to be kept to a reasonable size. The mix-
ture weights and cache-based probabilities for each sentence
must be based on the transcriptions of the other sentences,
and it is necessary to assume at each stage that these are
correct. If this assumption is particularly inaccurate then
these adaptation techniques will be of little use. It is there-
fore di�cult to assess the usefulness of a language model
which uses long-term context from its perplexity alone.

ACKNOWLEDGEMENTS

P.R. Clarkson is supported by an EPSRC advanced stu-
dentship. This work was supported in part by ESPRIT
project 20077 - SPRACH.

REFERENCES

[1] L. Burnard (editor). Users Reference Guide for the
British National Corpus. Oxford University Comput-
ing Services, May 1995.

[2] D. Carter. Improving Language Models by Clustering
Training Sentences. Technical report, SRI International,
1994.

[3] R. Iyer, M. Ostendorf, and J.R. Rohlicek. Language
Modeling with Sentence-Level Mixtures. In Proceedings
of the ARPA Workshop on Human Language Technol-
ogy, 1994.

[4] F. Jelinek. Self-Organized Language Models for Speech
Recognition. In A. Waibel and K.-F Lee, editors,
Readings in Speech Recognition, pages 450{506. Morgan
Kaufman Publishers, 1990.

[5] S.M. Katz. Estimation of Probabilities from Sparse
Data for the Language Model Component of a Speech
Recognizer. IEEE Transactions on Acoustics, Speech
and Signal Processing, 35(3):400{401, 1987.

[6] R. Kuhn and R. De Mori. A Cache-Based Natural Lan-
guage Model for Speech Reproduction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
12(6):570{583, 1990.

[7] R. Kuhn and R. De Mori. Corrections to `A Cache-
Based Natural Language Model for Speech Reproduc-
tion'. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 14:691{692, 1992.

[8] R. Rosenfeld. The CMU Statistical Language Modeling
Toolkit, and its use in the 1994 ARPA CSR Evalua-
tion. In ARPA Spoken Language Technology Workshop,
Austin, TX, January 1995.

