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ABSTRACT

Parsing can be improved in automatic speech understand-
ing if prosodic boundary marking is taken into account,
because syntactic boundaries are often marked by prosodic
means. Because large databases are needed for the train-
ing of statistical models for prosodic boundaries, we de-
veloped a labeling scheme for syntactic{prosodic bound-
aries within the German Verbmobil project (automatic
speech{to{speech translation). We compare the results of
classi�ers (multi{layer perceptrons and language models)
trained on these syntactic{prosodic boundary labels with
classi�ers trained on perceptual{prosodic and purely syn-
tactic labels. Recognition rates of up to 96% were achieved.
The turns that we need to parse consist of 20 words on the
average and frequently contain sequences of partial sentence
equivalents due to restarts, ellipsis, etc. For this material,
the boundary scores computed by our classi�ers can success-
fully be integrated into the syntactic parsing of word graphs;
currently, they improve the parse time by 92% and reduce
the number of parse trees by 96%. This is achieved by in-
troducing a special Prosodic Syntactic Clause Boundary
symbol (PSCB) into our grammar and guiding the search for
the best word chain with the prosodic boundary scores.

1. INTRODUCTION

Prosody structures utterances and helps the listeners to un-
derstand and disambiguate their meaning. To our knowl-
edge, however, so far nobody has really integrated this in-
formation into a complete automatic speech understanding
system. We will present a syntactic analysis of word hy-
potheses graphs using prosodic clause boundary informa-
tion. Our research is carried out in the speech{to{speech
translation project Verbmobil [19, 6] (domain: appoint-
ment scheduling) where the inuence of prosody can already
be evaluated in an end{to{end system; for the integration
of prosody in the Verbmobil system, cf. [12], for the lin-
guistic processing of Verbmobil, cf. [4].
A corpus analysis of Verbmobil data (human{human

dialogs) showed that about 70 % of the utterances contain
more than one single sentence [18]. About 25 % of the
utterances are longer than 10 seconds. Especially for such
a material, the use of prosody in parsing is crucial for two
reasons:
First, to ensure that most of the words that were spoken

are recognized, a large word hypotheses graph (currently
about 10 hypotheses per spoken word) has to be generated.
Finding the correct (or approximately correct) path through

1This work was partly funded by the German Federal Ministry
of Education, Science, Research and Technology (BMBF) in the
framework of the Verbmobil Project under Grant 01 IV 101 AO
and funded under Grants 01 IV 102 F/4 and 01 IV 102 H/0. The
responsibility for the contents lies with the authors.

a word hypotheses graph is thus an enormous search prob-
lem.
Second, spontaneous speech contains many elliptic con-

structions. So even if the spoken word sequence has been
recovered by word recognition correctly, there still might
be many di�erent parses possible, especially with longer
turns. Consider the following two of the at least 36 di�er-
ent syntactic readings for a word sequence taken from the
Verbmobil corpus
\Ja zur Not. Geht's auch am Samstag?"
vs. \Ja zur Not geht's auch am Samstag."

The appropriate English translations are
\O.K., if necessary. Is Saturday possible as well?"
vs.\Well, if necessary, Saturday is possible as well."

In these examples, only the prosodically marked boundaries
can disambiguate between the two di�erent semantic mean-
ings and pragmatic interpretations.
We use prosody only to guide the search for the best syn-

tactic parse through the word graph; no hard decisions are
made. Partial parses are ranked in an agenda according to
a score which takes into account the prosodic probability
for a clause boundary. At each step of the search the best
partial parse is extended. So the main use of prosodic infor-
mation will be to speed{up the search for the best complete
parse. However, in a system with limited resources (i.e. the
syntax has to produce a parse after n�turn length or it will
receive a time out signal), this speed{up will also increase
the recognition rate of the syntax module.

2. PROSODIC SYNTACTIC BOUNDARY
MARKERS | THE M{LABEL SYSTEM

We developed a syntactic{prosodic labeling scheme for Ger-
man that provides a coarse labeling of syntactic boundaries.
It can be done fast and fairly reliable because it is based
solely on the transliteration of the turn; i.e., we do not have
to listen to the turns. Prosodic knowledge is used, i.e.,
syntactic boundaries are marked di�erently depending on
whether they are likely to be marked prosodically. Typical
spontaneous speech phenomena are taken into account as
well. Currently we distinguish 10 labels which are grouped
into three major classes:

M3: clause boundary (between main clauses, subordinate
clauses, elliptic clauses, etc.)

M0: no clause boundary

MU: unde�ned, i.e. M3 or M0 cannot be assigned to this
word boundary without context knowledge and/or per-
ceptual analysis.

The labeling scheme is described in more detail in [2, 3].
In [2] we compared these labels with purely prosodic labels
(B{labels)2 [14], and precise syntactic labels (S{labels) [7].

2In the following we use B3 for a word boundary, which is
perceived as a major prosodic boundary.



B3 vs. :B3 M3 vs. M0 MB3 vs. MB0
cases 165 vs. 1284 177 vs. 1169 190 vs. 1259
MLP 87/87 87/83 85/82
LM 92/85 95/86 92/84
MLP+LM 94/89 96/89 94/88

Table 1. Percentage of correct classi�ed word
boundaries for di�erent combinations of classi�ers:
total vs. class{wise average

This comparison showed that there is a high agreement be-
tween these labels and, hence, justi�es our rather coarse
labeling scheme. The advantage of the M{labels is that
a high number of labeled data can be produced within a
short time, because they do not require a complete syntac-
tic analysis and they do not rely on perceptual evaluation.
Meanwhile, there are 7,286 turns (about 150,000 words) la-
beled with the Ms, which took only a few months.

3. SPEECH DATABASE

For the classi�cation experiments in Section 4, we used 3
dialogs of the Verbmobil database for testing (64 turns of
3 male and 3 female speakers, 1513 words, 12 minutes in to-
tal). For the training of the multi{layer perceptron (MLP)
all the available data labeled with the B{labels were used
(797 turns) except for the test set; for the language model
(LM), trained with the M labels, 6297 turns were used. For
the parsing experiments in Section 5 we chose 594 turns out
of 122 dialogs. These turns had been selected for evaluation
purposes by the DFKI (Saarbr�ucken), which was respon-
sible for the integration of the Verbmobil demonstrator.
For all of these turns, word graphs were provided by DFKI
using the word recognizer of the University of Karlsruhe3.
The word graphs contained 9.3 hypotheses per spoken word.
The word accuracy, i.e., the highest accuracy of any of the
paths contained in the graph, was 73.3%. 117 word graphs
were correct, i.e. they contained the spoken word chain.

4. AUTOMATIC BOUNDARY
CLASSIFICATION

We will now compare classi�cation results obtained with a
multi{layer perceptron (MLP), a stochastic (n-gram) lan-
guage model (LM), and a combination of both classi�ers.
The MLP serves as an acoustic{prosodic classi�er getting
acoustic and few lexical features as its input. The LM esti-
mates probabilities for boundaries given a few words in the
context of the word. With these classi�ers for each of the
words in a word chain or in a word graph a probability for
a clause boundary being after the word is computed.
The computation of the acoustic{prosodic features is

based on an automatic time alignment of the phoneme se-
quence corresponding to the spoken or recognized words.
For the boundary classi�cation experiments we only use the
aligned spoken words thus simulating 100% word recogni-
tion. For each word a vector of prosodic features is com-
puted automatically from the speech signal. The feature
set is described in [3] and, in more detail, in [9]. In order to
balance for the a priori probabilities of the di�erent classes,
during training the MLP was presented with an equal num-
ber of feature vectors from each class. For the experiments,
MLPs with 40/20 nodes in the �rst/second hidden layer
showed best results. During training B3 vs. :B3 was taken
as reference.
Trigram language models (LM) were additionally used for

the classi�cation of boundaries. They model partial word
chains where M3 and M0 boundaries have been inserted.

3We would like to thank Andreas Kl�uter, who provided us
with these word graphs using the word recognizer described in
[20].

This method as well as the combination of LM and MLP
scores is described in more detail in [11, 10].
In Table 1, we compare the results of di�erent classi�ers

for the two main classes boundary vs. not{boundary using
two di�erent types of reference boundaries: B, M, and MB,
which is a combination of both. In the case of M3 vs. M0,
the `unde�ned' boundaries MU are not taken into account.
As for MB, MB3 represents all word boundaries which are
either labeled with M3 or with MU and B3; MB0 refers to
all other word boundaries. These combined labels repre-
sent best what the syntax would like to get delivered by the
prosody. The �rst number in each row of the table shows
the overall recognition rate, the second is the average of the
class{wise recognition rates. The recognition rates take all
word boundaries except the end of turns into account; the
latter can be classi�ed in a trivial way. It can be noticed
that, roughly, the results get better from top left to bottom
right. Best results can be achieved with a combination of
the MLP with the LM no matter whether the perceptual B
or the syntactic{prosodic M labels serve as reference. The
LM alone is already very good; we have, however, to con-
sider that it cannot be applied to the `unde�ned' classes
MU, which are of course very important for a correct syn-
tactic/semantic processing and which account for about 4%
of all word boundaries and for 23% of all non{M0 bound-
aries. Especially for these cases, we need a classi�er trained
with perceptual{prosodic labels. Note, however, that even
on the M3/M0{task the combination of the two classi�ers,
MLP+LM, shows slightly better results than the LM alone.
Due to the di�erent a priori probabilities, the boundaries

are recognized worse than the non{boundaries with the LMs
(e.g., 80.8% for M3 vs. 97.7% for M0 for the MLP+LM
classi�er); this causes the lower average of the class{wise
recognition rates compared to the overall recognition rates.
It is of course possible to adapt the classi�cation to various
demands, e.g., in order to get better recognition rates for
the M3 boundaries if more false alarms can be tolerated.
In the following section, prosodically scored word graphs

are used for parsing. This means, that for each of the
word hypotheses contained in the graph the probability for
a clause boundary following this word is computed. The
computation of the acoustic features as well as of the LM
score is based on �2 context words. In the case of the
word graphs, the best scored word hypotheses being in the
context of a word hypothesis are used. This approach is
sub{optimal, but we could show in [11], that the recogni-
tion rate does not decrease very much when classifying word
graphs instead of the spoken word chain.

5. GRAMMAR AND PARSER

In this paper, we describe the interaction of prosody with
the syntax{module developed by Siemens (Munich); for the
interaction with another syntax{module developed by IBM
(Heidelberg) cf. [1]. In the module described here, we use
a Trace and Uni�cation Grammar (TUG) [5] and a mod-
i�cation of the parsing algorithm of Tomita [17]. The ba-
sis of a TUG is a context free grammar augmented with
PATR-II-style feature equations. The Tomita parser uses a
graph-structured stack as central data structure [16]. After
processing word wi the top nodes of this stack keep track of
all partial derivations for w1...wi. In [15], a parsing-scheme
for word graphs is presented using this parser. It combines
di�erent knowledge sources when searching the word graph
for the optimal word sequence: a TUG, a statistical trigram
or bigram model and the score of the acoustic component.
In the work described here we added another knowledge
source for clause boundaries computed as indicated in Sec-
tion 4.
When searching the word graph, partial sentence hy-

potheses are organized as a tree. A graph-structured stack
of the Tomita parser is associated with each node. In the



(rule1) input ! phrase input .
(rule2) phrase ! s PSCB .
(rule3) phrase ! s ell PSCB .
(rule4) phrase ! np PSCB .
(rule5) phrase ! excl PSCB .
(rule6) phrase ! excl .

Table 2. Grammar 1 for multiple phrase utterances

search an agenda of score{ranked orders to extend a partial
sentence hypothesis (hypoi = hypo(w1,...,wi)) by a word
wi+1 or by the PSCB symbol, respectively, is processed: The
best entry is taken; if the associated graph{structured stack
of the parser can be extended by wi+1 or by PSCB, respec-
tively, new orders are inserted in the agenda for combin-
ing the extended hypothesis hypoi+1 with the words, which
then follow in the graph, and, furthermore, the hypothesis
hypoi+1 is extended by the PSCB symbol. Otherwise, no en-
tries will be inserted. Thus, the parser makes hard decisions
and rejects hypotheses which are ungrammatical.
The acoustic, prosodic and trigram knowledge sources

deliver scores which are combined to give the score for an
entry of the agenda. In the case the hypothesis hypoi is ex-
tended by a word wi+1 the score of the resulting hypothesis
is computed by

score(hypoi+1) = score(hypoi)

+acoustic score(wi+1)

+� � trigram score(wi�1; wi; wi+1)

+� � prosodic score(wi+1; B)

+0

score of optimal continuation
0

:

where B can be PSCB or :PSCB. prosodic score(w; PSCB)
is a `good' score if the prosodic classi�er detected a
clause boundary after word w, a `bad' score otherwise.
prosodic score(w;:PSCB) is `good' if the prosodic classi�er
has evidence that there was no prosodic clause boundary
after word w, `bad' otherwise.
The weights � and � are determined heuristically. Prior
to parsing, a Viterbi{like backward pass approximates the
scores of optimal continuations of partial sentence hypothe-
ses (A�{search). After a certain time has elapsed, the search
is abandoned. With these scoring functions, hard decisions
about the positions of clause boundaries are only made by
the grammar but not by the prosody module. If the gram-
mar rules are ambiguous given a speci�c hypothesis hypoi,
the prosodic score guides the search by ranking the agenda.
In order to make use of the prosodic information, the

grammar had to be slightly modi�ed. The best results were
achieved by a grammar that neatly designed the occurrence
of PSCBs between the multiple phrases of the utterance. A
context{free grammar for spontaneous speech has to allow
for a variety of possible input phrases following each other
in a single utterance, cf. (rule1) in Table 2. Among those
count normal sentences, (rule2), sentences with topic ellipsis
(rule3), elliptical phrases like PPs or NPs (rule4), or pre-
sentential particle phrases (rule5 and rule6). Those phrases
were classi�ed as to whether they require an obligatory or
optional PSCB behind them. The grammar fragment in Ta-
ble 2 says that the phrases s, s-ell and np require an oblig-
atory PSCB behind them, whereas excl(amative) may also
attach immediately to the succeeding phrase (rule 6). The
segmentation of utterances according to a grammar like in
Table 2 is of relevance to the text understanding compo-
nents that follow the syntactic analysis, cf. the following
two examples which di�er w.r.t. the attachment of the ex-
clamative particle ja. In the �rst example it is followed
immediately by a sentence (rule6), whereas in the second it
is separated by a PSCB from the following sentence (rule5).
Semantic analysis or dialog can make use of these di�erent

(rule 7) input ! phrase , PSCB , input .
(rule 8) phrase ! s .
(rule 8) phrase ! s ell .
(rule 9) phrase ! np .
(rule 10) phrase ! excl .

Table 3. Grammar 2 for multiple phrase utterances

rules. The exclamative particle in example (1) might be
identi�ed as introduction, in example (2) it might be inter-
preted as a�rmation.

(1) Path found in VM1/N011K/NHW3K002.A16:
[ja,also,bei,mir,geht,prinzipiell,jeder,Montag,
und,jeder,Donnerstag,PSCB]
Well, as far as I'm concerned, in principle every Monday
or Thursday is possible.

(2) Path found in VM4/G275A/G275A002.B16:
[ja,PSCB,das,pa"st,mir,Dienstag,PSCB,ist,
der,f"unfzehnte,PSCB]
Yes. This Tuesday, that suits me. That is the �fteenth.

The occurrence of the second PSCB in example (2) does
not mirror the intention of the speaker: Here the PSCB di-
vides the subject Dienstag from its matrix clause ist der
f�unfzehnte. A hesitation in the input that did not get de-
tected as false alarm might be responsible for this. However
(2) is a syntactically correct segmentation since a grammar
for spoken language has to allow for topic ellipsis and the
phrase ist der f�unfzehnte constitutes a correct sentence ac-
cording to (rule 3). The grammar therefore retrieves the
interpretation for this lattice as indicated by the English
translation.4

6. EXPERIMENTAL RESULTS

In experiments using a preliminary version of the sub{
grammars for the individual types of phrases, we compared
the grammar explained in Section 5 with a grammar that
obligatorily required a PSCB behind every input phrase, see
Table 3.
With the grammar shown in Table 2 149 word graphs

could successfully be analyzed; with the one given in Ta-
ble 3, only 79 word graphs were analyzed. This indicates
that often the prosody module computes a high score for
:PSCB after exclamative particles so that parsing fails if a
PSCB is obligatorily required as in the grammar of Table 3.
With an improved version of the grammar for the in-

dividual phrases, we repeated the experiments using the
grammar of Table 2 and compared them with the parsing
results using a grammar without PSCBs. For the latter, we
took the category PSCB out of the grammar and allowed
all input phrases to adjoin recursively to each other. The
graphs were parsed without taking notice of the prosodic
PSCB information contained in the lattice. In this case, the
number of readings increases and the e�ciency decreases
drastically, cf. Table 4. The statistics show that on the
average, the number of readings decreases by 96% when
prosodic information is used, and the parse time drops by
92%. If the lattice parser does not pay attention to the
information on possible PSCBs, the grammar has to deter-
mine by itself where the phrase boundaries in the utterance

4For this word chain, it would make no di�erence for the text
understanding component, whether the PSCB is before or after
Dienstag. Actually, the spoken word chain is: Ja, das pa�t. Nur
Dienstag ist der f�unfzehnte. and the dialog goes like this: A:
What about Tuesday the sixteenth? B: Yes. That's ok. But
Tuesday is the �fteenth. A: Sorry. Then let's say Wednesday
the sixteenth. B: OK. Fine. B thus only con�rms the sixteenth,
but not Tuesday.



with PSCBs without PSCBs
# successful analyses 359 368

�# syntactic readings 5.6 137.7
� parse time (secs) 3.1 38.6

Table 4. Parsing statistics for 594 word graphs

might be. It may rely only on the coherence and complete-
ness restrictions of the verbs that occur somewhere in the
utterance. These restrictions are furthermore softened by
topic ellipsis, etc. Any simple utterance like Er kommt mor-
gen results therefore in a lot of possible segmentations, see
Table 5.

[er,kommt,morgen] He comes tomorrow.
[er],[kommt,morgen] He? Comes tomorrow!
[er kommt],[morgen] He comes. Tomorrow!
[er],[kommt],[morgen] He? Comes! Tomorrow.

Table 5. Syntactically possible segmentations

The fact that 9 word graphs (i.e. 2%) could not be an-
alyzed with the use of prosody is due to the fact, that
the search space is explored di�erently and that the �xed
time limit has been reached before the analysis succeeded.
However, this small number of non{analyzable word graphs
is neglectable considering the fact that without prosody,
the average real{time factor is 6.1 for the parsing. With
prosodic information the real{time factor drops to 0.5; the
real{time factor for the computation of prosodic informa-
tion is 1.0 (with word graphs of about 10 hypotheses per
spoken word).
Empty categories are an even more serious problem.

They are used by the grammar in order to deal with verb
movement and topicalisation in German. The binding of
these empty categories has to be checked inside a single
input phrase, i.e., the main sentence. No movement across
phrase boundaries is allowed. Now, whenever a PSCB signals
the occurrence of a boundary, the parser checks whether
all binding conditions are satis�ed and accepts or rejects
the path that was found so far. This mechanism works
e�ciently in the case prosodic information was used. For
the grammar without PSCBs, no signal where to check the
binding restrictions is available. Therefore, the uncertainty
about segmentation of multiple phrase utterances led to in-
de�nite parsing time for some of the lattices in the corpus.
Those lattices were analyzed correctly with PSCBs.

7. CONCLUSION

We showed that prosodic clause boundary information can
reduce the parse time of word graphs computed for spon-
taneous speech by 92%. The number of parse trees of the
resulting analyses decreases by 96%. This is especially due
to the high number of elliptic and interrupted phrases con-
tained in spontaneous speech, which cause that the position
of clause boundaries is highly ambiguous. Apart from dif-
ferences in the particular technical solutions of some sub{
problems, our approach di�ers from the prosodic parse{
rescoring described in [13, 8] mainly in the fact that we
�rst compute prosodic scores based on the word hypotheses
generated by the word recognizer. These scores are then
integrated directly into the parsing process which does not
only reduce the number of readings but also the parse time.
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