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ABSTRACT

This paper describes a Jacobian approach to fast adap-
tation of acoustic models to noisy environments. Acoustic
models under a noise assumption are compensated by Ja-
cobian matrices with the di�erence between assumed and
observed noise cepstra. Detailed mathematical formula-
tion and algorithm derivation are presented. Experiments
showed that when a small amount of training data is given,
this approach outperforms the existing approaches (such as
PMC and NOVO) for composing a model from speech and
noise models. It drastically reduces computational cost by
replacing the complicated computation of model composi-
tion by simple matrix arithmetic and enables real-time en-
vironmental noise adaptation. Combination with spectrum
subtraction is also discussed.

1. INTRODUCTION

Acoustic model mismatch often occurs in speech recogni-
tion, even if the model has been carefully trained in a par-
ticular environment, because environmental conditions may
vary from time to time (e.g., mobile applications) or with
each usage (e.g., telephone applications). This often results
in a serious degradation of performance.

Existing methods for the adaptation of acoustic mod-
els for clean speech to environmental conditions include
PMC[2, 3] and NOVO[1]. Though they can create an adapted
acoustic model from a clean-speechmodel and a noise model,
too much computation is required to follow in real-time the
instantaneous changes in noise spectrum and level. More-
over, these methods tend to require a considerable amount
of training noise sample data.

Considering that speaker adaptation is done from the
initial speaker, A (or speaker-independent), to the target
speaker, B, it should be reasonable to consider acoustic
model adaptation from noise A to noise B. Based on this
idea, the question here is what can be done for compensa-
tion of the mismatch if we are given the di�erence between
the assumed (expected) conditions, A, when training and
the observed (real) conditions, B, when recognizing, when
provided with only a short sample of environmental noise.
If the change is relatively small, there may be a simpler and
more e�ective method for short samples.

We introduce a new approach from a mathematical point
of view that uses a Jacobian matrix for fast adaptation.
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Acoustic models are considered non-linear functions of the
conditions such as noise spectrum, speaker characteristics,
microphone, etc. A small change in the condition domain
is propagated to the model domain so that the relation-
ship between the source and destination is connected by a
Jacobian matrix. Though one previous work[4] on the use
of Taylor series is related to this paper in the sense that
the �rst-order coe�cient of the vector Taylor series used
there is equivalent to a Jacobian matrix, the formulation
and application here are di�erent.

2. JACOBIAN ADAPTATION (JA) OF
ACOUSTIC MODELS

2.1. Jacobian Matrix

It is well known in the basics of calculus that the di�erential
of an analytic function, f(x; y), is represented in terms of
its partial derivatives:

df(x; y) = fx(x; y)dx+ fy(x; y)dy (1)

which means that small changes, dx in the x-domain and
dy in the y-domain, cause a change, df(x; y), in the function
domain.

This relation holds also in the vector domain. If an
n-dimensional vector, V = (v1; v2; � � � ; vn)

T , is an ana-
lytic function of a vector, U = (u1; u2; � � � ; un)

T , a small
change, �U , causes another small change, �V , and they
are related to each other by:

�V =
@V

@U
�U (2)

where �U=(�u1;�u2; � � � ;�un)
T , �V =(�v1; �v2; � � � ;

�vn)
T . The (n � n)-matrix

�
@V

@U

�
ij

=
@vj

@ui
is called the

Jacobian matrix between U and V .

2.2. Jacobian Adaptation of Cepstrum Vectors

When the environmental noise spectrum is observed in the
cepstrum domain, the relationship between cepstra of speech,
noise, and speech + noise is a rather complicated non-linear
function 	 : where F denotes the (n�n) Fourier transform
matrix which is essentially the cosine transform in real sym-
metric spectrum cases, namely, Fij = cos 2ij�

n
. Suppose n is

su�ciently large so that a Fourier matrix well approximates
the Fourier integral. Vectors with smaller dimensions can



be extended to dimension n with zero-valued components.1

CS+N = 	 (CS;CN ) (3)

= F
�

h
log
�
exp(FCS) + exp(FCN )

	i
(4)

The relationship between small changes in \speech +
noise" cepstrum CS+N and noise cepstrum CN is as follows
when the speech cepstrum CS is �xed:

�CS+N =
@CS+N

@CN

�CN (5)

To obtain the Jacobian matrix, denote the speech and
noise spectra by S = (S1; S2; � � � ; Sn)

T and N = (N1; N2;

� � � ; Nn)
T in the linear-scaled spectrum domain. Also de-

note the cepstrum of \speech+noise" by CS+N . They are
related to their cepstra by

logS=FCS; logN=FCN ; log(S+N)=FCS+N (6)

From Eq. (5), the Jacobian matrix is rewritten as fol-
lows:
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whereF
�

is the transposed complex conjugate of the Fourier
transform matrix F that F

�

F = 1. This gives a practical
calculation of Jacobian components:�
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To summarize, for arbitrary speech and noise cepstra, CS

andCN , whenCN slightly changes into ~CN , the composite

cepstrum, CS+N = 	 (CS ;CN ), changes into ~CS+N given
by:

~CS+N = CS+N +
@CS+N

@CN

( ~CN �CN ) (9)

with good approximation.

2.3. Jacobian Adaptation of Time Derivatives

Consider that the cepstrum is a continuous function of time
from which we usually observe a sample sequence for dis-

crete time points. Denote by _C the time derivative of C.

Because the time derivative of spectrum _S is related to

the time-derivative of cepstrum _C by

_S=
@

@t

�
exp(logS)

	
=exp(logS)

@

@t
(logS)=SF _CS (10)

1Hereinafter, vector operations are de�ned as follows for vec-
tors a and b:

ab = (a1b1; a2b2; � � � ; anbn)
T

a=b = (a1=b1; a2=b2; � � � ; an=bn)
T

loga = (log a1; log a2; � � � ; log an)
T

Note that matrix arithmetic is di�erent. It is possible to re-
gard vectors as diagonal matrices for consistency with matrix
arithmetic.

we obtain the Jacobian matrix of the time derivative of the
composite cepstrum from Eq.(8) by using a relation between
the time derivative of the linear spectrum and the cepstrum:
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which leads to the practical calculation:�
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Furthermore, the Jacobian matrix between the time
derivatives of the cepstra for speech and noise, and noise
is given by

@ _CS+N

@ _CN

=
@ _CS+N

@CN

@CN

@ _CN

=
@ _CS+N

@CN

_CN

�CN
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where the double dots denote a second-degree derivative. In
practice, we can assume that the mean of the delta cepstrum
of the noise signal is 0 and we can ignore the above formula.

2.4. Adaptation of Mean Vectors

We have discussed the point-to-point correspondence be-
tween a noise cepstrum vector and a composite (speech +
noise) cepstrum vector and derived the Jacobian matrix be-
tween them. This relation, however, can not be simply ap-
plied to mean vectors of statistical distributions because of
non-linearity.

We have to assume that the variance of the distribution
of CS+N is su�ciently small and stays within the e�ective
range of linear (Jacobian) approximation. Then we can ex-
tend the above relationship to mean vectors of statistical
distributions. In other words, if the Jacobian matrix can
be regarded as a constant within the distribution range,
when the mean vector Mean[CN ] of a statistical distribu-
tion changes by a small amount �Mean [CN ], it causes
another small change, �Mean[CN ], in Mean[CS+N ]. They
are related to each other by

�Mean[CS+N ] =
@CS+N

@CN

�Mean[CN ] (14)

2.5. Adaptation of Variance Matrices

To discuss the adaptation of a variance matrix of a statis-
tical distribution, assume CS+N , CN , and �CN are statis-
tically independent from each other. When CS+N slightly
changes by �CN , the resulting change �Cov[CS+N ] of the
covariance matrix of CS+N is well approximated by2

Cov[ CS+N+�CS+N ]

= Cov[ CS+N + JC �CN ]

= Cov[CS+N ] + JC Cov[�CN ] J
T
C

= Cov[CS+N ] + JC fCov[CN+�CN ]�Cov[CN ] g J
T
C

2De�ned here is Cov [x] � E [(x � E [x])(x � E[x])T ] =
E [xxT ] � E[x]E [x]T , where x represents a stochastic variable
vector.



where JC denotes the Jacobian matrix between CN and
CS+N . In a more compact form:

�Cov[CS+N ] = JC �Cov[CN ] J
T
C (15)

Similarly, we have:

�Cov[ _CS+N ] = J _C �Cov[ _CN ] J
T
_C

(16)

We now have Jacobian adaptation formulae for means
and variances of statistical distributions of the cepstrum,
and time derivatives of the cepstrum.

2.6. Jacobian Adaptation of CMHMMs

To adapt continuous mixture hidden Markovmodels (CMH-
MMs) to the environmental noise, we need further approx-
imations. First, the time derivative of cepstrum C is ap-
proximated by a weighted least mean square �t of a lin-
ear model to the vector sequence, i.e., the so-called \delta-
cepstrum" as formulated in the �rst appearance of delta-
cepstrum[6].

The outline of the procedure for HMM adaptation to
the change in noise is as follows.
Training Phase:

Step 1 - Assume the reference noise.3

Assume a particular noise condition as the reference.
From the noise cepstrum, CN , obtain its mean vec-
tor, Mean[CN ], and the variance matrix, Cov[CN ].
Also obtain the spectrum N corresponding to the
cepstral mean vector by using Eq. (6).

Step 2 - Train the model.
Train HMMs with noisy speech data or simulated
noisy speech data. More practically, \speech + noise"
HMMs can be composed from clean speech and noise
models using PMC[2, 3] or NOVO[1].

Step 3 - Calculate Jacobian matrices.
For each mean vector of all the mixture components
in the CMHMMs, calculate the corresponding linear

spectrum S [with Eq. (6)], its time derivative _S [Eq.
(10)], and Jacobian matrices JC for the cepstrum
[Eq. (7) or (8)] and J _C for the delta-cepstrum [Eq.
(11)].

Recognition Phase:

Step 4 - Observe the noise.
Observe the environmental noise cepstrum and �nd
the di�erences of the mean vectors, �Mean[CN ],
and those of the covariance matrices, �Cov[CN ],
between the noise assumed in the training phase and
that actually observed.

Step 5 - Update mean vectors.
Update all cepstrum and delta-cepstrum mean vec-
tors of mixture components in the HMMs by Jaco-
bian adaptation of means.

Mean(CS+N)  Mean(CS+N) + JC�Mean(CN )

Mean( _CS+N)  Mean( _CS+N) + J _C�Mean( _CN )

3The time derivative of cepstrum _N [Eq. (10)] is assumed to
be 0 as the noise cepstrum should not contain a time trend. The

mean vector, Mean[ _CN ], and the variance matrix, Cov[ _CN ], of

the noise time derivative _CN are also assumed to be 0.

Step 6 - Update variance matrices.
Update all cepstrum and delta-cepstrum covariance
matrices in the HMMs by Jacobian adaptation of co-
variances.

Cov(CS+N)  Cov(CS+N) + JC�Cov(CN )J
T
C

Cov( _CS+N)  Cov( _CS+N) + J _C�Cov(
_CN )J

T
_C

In the above procedure, the critical part is considered to
be the adaptation of the cepstral mean vectors. Other parts
can be removed to make the whole procedure simpler; in the
recognition phase, the procedure requires only one matrix-
vector multiplication and vector addition for each mixture
component distribution.

2.7. Theoretical Limit of JA Approximation

To summarize the approximations included in the above
procedure, it is assumed that

� The cepstral di�erence between the assumed and ob-
served noises is within the linearity range. [Eq. (5)]

� The noise cepstrum contains no trend along time.
(Thus, the mean vector of the time derivative of the
noise cepstrum is zero.)

� Fourier transform is well approximated with a �nite
number, n, of frequency points.

� The distribution ranges (variances) of mixture com-
ponents are small enough to stay within the linearity
range.

� CS+N , CN , and �CN are statistically independent.
� When covariance matrices are chosen to be diagonal,
the resulted o�-diagonal components from Eqs. (15)
and (16) can be ignored. In this case, this causes
another approximation while the required computa-
tional time is considerably less than for the full-co-
variance case.

These theoretical limits are relaxed where the linear
compensation of a non-linear function is even better than
no compensation, and the e�ective range of the present pro-
cedure may not be limited within the linearity range. Note
also that the above formulation is not limited within Gaus-
sian mixtures.

3. ADAPTATION IN SPECTRAL DOMAIN

In this paper, noise is observed in the cepstrum and cepstral
time-derivative domains. Alternatively, it can be observed
in the linear spectral domain from which we can directly
derive the Jacobian matrix:

@CS+N

@N
=

@CS+N

@(log(S+N))

@(log(S+N))

@(S+N)

@(S+N)

@N

= F �
1

S +N
� 1 =

F

S +N
(17)

This leads to another fast noise adaptation procedure which
is not treated here.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

The present algorithm was tested in a speaker-independent
isolated-word speech recognition experiment as follows:



Table 1. Speech recognition rates (%) for various noise observation durations (JA - cepstral means only).

clean speech model noise-mismatched noise observation length (sec)
algorithm (no adaptation) initial model 0.2 0.3 0.4 0.5 1.0 2.0

NOVO 45.8 50.0 52.6 62.9 67.3 69.4 75.4 77.4
JA 71.4 71.1 71.8 73.2 74.5 75.0

SS+NOVO 54.6 76.1 77.0 78.5 79.5 80.1 81.3 82.2
SS+JA 78.2 78.3 78.9 79.6 80.9 81.6

* These results were averaged over 13 testing speakers (9 male + 4 female) at 10dB SNR.

Training { Step 1: In the training phase, one minute
of tra�c noise at a crossroads was chosen as the
\assumed noise." Step 2: A noise-adapted HMnet
(context-dependent HMM phone models in a network
form)[5] with an SNR of 10 dB was composed us-
ing the NOVO[1] method from a speaker-independent
HMnet, trained with a large clean speech database,
and the noise means and variances. Step 3: The Ja-
cobian matrices for all mean vectors and covariances
were calculated.

Recognition { Step 4: In the recognition phase, a noise
signal collected at an exhibition hall was chosen as the
\observed noise" and added to clean test speech data
of 100 city names from 13 speakers. The di�erence
between the assumed and observed noise signals was
also calculated in the cepstrum domain. Step 5 & 6:
The Jacobian matrices were calculated and Gaussian
mean vectors and covariance matrices were updated
for all Gaussian distributions.

Evaluation { Recognition rates were evaluated for 4 dif-
ferent durations of noise observation and averaged
over 13 testing speakers. Combination with noise
spectrum subtraction (SS) was also tested.

4.2. Experimental Results and Discussion

Table 1 shows a comparison of speech recognition rates:
with clean HMM and with noise-mismatched HMM (us-
ing NOVO with a 60-sec noise sample) both cases with
and without spectrum subtraction. It also shows that JA
(Jacobian Adaptation) yields even better performance with
short noise observations than does NOVO (which is roughly
equivalent to PMC). Table 2 shows that JA has an out-
standing advantage in computation. These are results from
JA of cepstral means only. The combination with noise
spectrum subtraction signi�cantly enhanced the performance
of JA.

One possible application of this outstanding advantage
is real-time environment adaptation where short periods of
environmental noise are observed (e.g., between the guid-
ance sentences) before a speaker's utterances.

In preliminary experiments, no performance improve-
ment was seen with the matrix dimension, n, above the
cepstrum dimension.

In additional experiments of JA of variances and delta-
cepstra, no signi�cant improvement was found compared
with the adaptation of cepstral mean vectors only. One
possible reason is that the delta-cepstrum is not sensitive
to additive noise. A noise observation duration of less than
2 seconds seems too short to accurately obtain Cov[CN ]
covering the temporal uctuations. As might be expected,

Table 2. Computational complexities (JA - cepstral mean
vectors only; measured on SPARCstation20).

phase JA NOVO ratio J/N

training 2216 msec 4416 msec 1/2

recognition 149 msec 5066 msec 1/34

in adaptation of covariances, negative variances are some-
times yielded from Eq. (15) when the observed noise dura-
tion is short and the resulting di�erence of noise variances
is a large negative value.

5. CONCLUSION

Jacobian Adaptation (JA) of acoustic models for speech
recognition has been presented in this paper. In noisy
speech recognition at 10 dB SNR, JA experimentally gave
even better performance with a 0.2-second noise observa-
tion than did NOVO (or, equivalently, PMC) with a 60-
second noise observation, while having only 1/34 the com-
putational complexity. The JA framework has a wide ap-
plicability to acoustic model adaptation.
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