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ABSTRACT

In the context of continuous density hidden Markov model
(CDHMM) we present a uni�ed maximum likelihood (ML)
approach to acoustic mismatch compensation. This is
achieved by introducing additive Gaussian biases at the
state level in both the mel cepstral and linear spectral do-
mains. Flexible modelling of di�erent mismatch e�ects can
be obtained through appropriate bias tying. A Maximum
likelihood approach for joint estimation of both mel cepstral
and linear spectral biases from the observed mismatched
speech given only one set of clean speech models is pre-
sented, where the obtained bias estimates are used for the
compensation of clean speech models during decoding. The
proposed approach is applied to the recognition of noisy
Lombard speech, and signi�cant improvement in the word
recognition rate is achieved.

1. INTRODUCTION

It is well known that acoustic mismatch can cause severe
degradation to the performance of current speech recog-
nition systems. Also recent research results indicate that
most sources of acoustic mismatch occuring in practice can
be modelled as an additive bias in either the mel cepstral
or linear spectral domains at di�erent levels (e.g. phoneme,
broad phonetic class, all speech,....)[1].In the linear spectral
domain, stationary additive white noise is an additive bias
that is common to all speech, whereas stationary additive
coloured noise has additive bias components at di�erent lev-
els depending on its frequency response. Speaker di�erence
can be viewed as an additive bias in the cepstral domain
having both a global component and phone dependent com-
ponents [5]. A communication channel or a transducer is
also an additive bias in the cepstral domain which is com-
mon to all speech events. Finally it was shown that stressed
speech and Lombard e�ect can be modelled by using an ad-
ditive bias at the word level [6], or the broad phonetic level
[7].

To provide a general model of acoustic mismatch in the
framework of the continuous density hidden Markov model
(CDHMM) we propose to introduce additive Gaussian bi-
ases at the state level in both the linear spectral and mel
cepstral domains, where di�erent mismatch e�ects can be
modelled through appropriate bias tying. A Maximum like-
lihood approach to joint estimation of both mel cepstral and
linear spectral biases from the observed mismatched speech

given only one set of clean speech models de�ned in the
mel cepstral domain is presented. These bias estimates are
used for the compensation of clean speech models during
decoding. Based on this formulation speci�c bias models
in the mel cepstral and linear spectral domains are derived,
among which a new polynomial trend cepstral bias model
proved e�ective for Lombard speech compensation.
The proposed approach is applied to the recognition of

noisy Lombard speech, where (based on previous research
evidence)it is assumed that the mismatch has both mel
cepstral and linear spectral components. Using the joint
bias compensation algorithm signi�cant improvement in
word recognition accuracy is obtained, when using a lim-
ited amount of training data in the mismatch environment
(no separate stress database is required).
The paper is organized as follows. Section 2 gives a gen-

eral formulation of the problem. Bias parameter estimation
and model compensation are considered in Sections 3 and
4 respectively. Section 5 shows the implementation of the
algorithm to noisy Lombard speech. Experimental results
are given in Section 6 followed by conclusion in Section 7.

2. PROBLEM FORMULATION

In a CDHMM framework, we assume that for model state
i, the observed mismatched speech (Y ) is obtained through
the corruption of clean speech (X) by state dependent, sta-
tistically independent, additive,Gaussian biases in both the
mel cepstral (Bc

i ) and the linear spectral (Bl
i) domains. In

the mel cepstrum domain this can be expressed mathemat-
ically as:

Y = C log(exp(C
�1

(X +B
c
i )) + exp(C

�1
B

l
i)) (1)

Where C is the DCT transformation matrix, and exp()
and log()means component-wise exponential and logarithm
functions respectively.
The ML bias model parameter estimates given the ob-

served mismatched speech Y and the clean speech models
�x can be written as:

(�
�

bc ; �
�

bl
) = argmax

(�bc ;�bl
)

P (Y j�x; �bc ; �bl) (2)

Due to the nonlinear nature of the global optimization in
(2) we propose to successively improve the bias estimates
through the iterative application of the local maximizations
in (3) and (4).
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Parallel model combination (PMC) [2] provides a �exible
framework for model combination and tranformation. A
generalized view of PMC consists of applying the following
model combinations and transformations:

� A transformation T (�) from the mel cepstral to the
linear spectral domains.

� Additive model combination C(�1; �2)(which can be
applied in either the mel cepstral or linear spectral do-
mains).

� And by making the assumption that the sum of two
lognormal variables is also lognormal, an inverse trans-
formation T �1(�) from the linear spectral to the mel
cepstral domains.

Details of the transformations can be found in e.g. [2],[9].
Using the above model combinations and transformations

(3) and (4) can be rewritten as:
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where �xl , �lxc ,and �
l
bl
are given by:

�xl
def

= T �1(C(T (�x);T (��bl))) (7)

�
l
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= T (C(�x; �
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bc )) (8)
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bl
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and Y l is the mismatched speech transformed to the lin-
ear spectral domain.
The basic idea of the proposed algorithm is to use only

one set of clean speech models �x de�ned in the mel cep-
stral domain to successively obtain bias parameter esti-
mates through the application of (5) and (6)in conjunction
with the model combinations and transformations (7)-(9).
These bias estimates are used for clean speech model com-
pensation during decoding.

3. PARAMETER ESTIMATION

In this section we present a maximum likelihood approach
to bias parameter estimation. A uni�ed view of both (5)
and (6) can be written as:

�
�

b = argmax
�b

P (Y j�x; �b) (10)

The problem in (10) is that of ML estimation of addi-

tive bias parameters �b
def

= (�b;i;�b;i), where statistics are
Gaussian for (5) and lognormal (due to mel cepstrum to
linear spectral transformation) for (6). An EM based solu-
tion for this parameter estimation problem in the Gaussian

case can be found in the literature(e.g. [3],[8]), the mean
and covariance estimates for one obseravtion sequence can
be written as:
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where T is the observation sequence length, M is the
number of mixture components per state, and 
t(i; k) =
P (st = i;mt = kjY ) which can be calculated using the
forward backward algorithm. The expected values in equa-
tions (11) and (12) are calculated as:

E[btjyt; k; i] = �b;i(�x;i;k +�b;i)
�1(yt � �x;i;k ) +

�x;i;k(�x;i;k +�b;i)
�1
�b;i (13)

E[btb
T
t jyt; k; i] = E[btjyt; k; i]E[b

T
t jyt; i; k] +

�b;i�x;i;k(�x;i;k +�b;i)
�1 (14)

Thus, bias training consists of the iterative application
of the E-step (equations (13)-(14)), and the M-step (equa-
tions (11)-(12)) starting from some initial value of the bias,
where each iteration ensures the increase of the observed
data likelihood. The above EM algorithm can be extended
to the lognormal case by considering the following :

� It is regarded as a �rst and second moment matching
technique rather than an exact ML algorithm.

� No closed form expressions exist for the required ex-
pectations, and these expectations can be obtained by
using numerical integration.

The output of this training procedure will be the optimal
bias parameter estimates in the mel cepstral (��bc) and the

linear spectral (�l�bl) domains.

4. MODEL COMPENSATION

After obtaining the optimal bias parameter estimates they
are used in compensating the clean speech models. The
model compensation process can be summarized as follows:

� Combine �x and ��bc in the cepstral domain, which can
be represented as �xc = C(�x; �

�

bc
).

� Combine the resulting model and �l�bl in the linear

spectral domain, which can be represented as �lxcl =
C(T (�xc); �

l�
bl
).

� Transform the combined model to the cepstral domain,
which can be expressed as �xcl = T �1(�lxcl). This
model is used for mismatched speech decoding.

5. IMPLEMENTATION ISSUES

The implementation focuses on noisy Lombard speech
recognition. Some implementation issues of the algorithm
in both the mel cepstral and linear spectral domains are
given below.



5.1. Cepstral domain

In the cepstral domain two bias models are considered.
An Independent bias model where bias components are as-
sumed statistically independent, and a Polynomial trend

bias model where bias components are assumed to follow a
polynomial function along the cepstral dimension. The use
of the polynomial trend model results in better utilization of
bias training data, and is also a tractable approximation to
the empirical �nding in [6] that stressed speech bias follows
an exponential trend.
In the case of independent bias model a scalar version of

the estimation algorithm presented above can be separately
applied to each cepstral component. The estimation equa-
tions remain the same as (11) and (12), while the expected
values calculation is simpli�ed to:

E[btjyt; k; i] =
�2b;i

�2
x;i;k

+ �2
b;i
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�2
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�2b;i�
2

x;i;k

�2x;i;k + �2b;i
(16)

In the case of polynomial trend bias we consider the bias
bt generated according to the equation:

bt = Za+ et (17)

where bt is a P � 1 bias vector,
et is a zero mean P � 1 error vector, assumed Gaussian,
a is a Q � 1 coe�cient vector,
and Z is a P � Q matrix of powers, where Zp;q = pq .
It can be shown that (see [4]) the EM parameter estimates

corresponding to those in Section 3 can be obtained as:
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Furthermore if the error covariance matrix �b;i is assumed
to be diagonal, the expected values in the (18)and(19) can
be calculated from (15) and (16). In all experiments with
the polynomial trend model the covariance is assumed to
be diagonal and a third order function is used based on
preliminary experimentation.
Appropriate bias tying is a key issue in the successful

application of the proposed algorithm. In this work three
cepstral bias patterns are empirically evaluated, these pat-
terns consist of:

� 8 bias vectors/word denoted B8.

� 4 bias vectors/word denoted B4.

� 1 bias vector/word denoted B1.

For all the three patterns the bias variance is tied for all
states of all words.

5.2. Linear spectral domain

In implementing the linear spectral bias estimation algo-
rithm (6) we face the following di�culties:

� Expected values have no closed form solution.

� Full covariance matrices are used in the linear spectral
domain,making the approach computationally expen-
sive.

� A suitable gain mismatch compensation technique
should be developed.

Hence, in this work linear spectral bias is estimated from
the speech pauses and used in (5). However this simpli�ed
form of the algorithm jointly compensates for both additive
and convolutive biases. And as we are treating stationary
additive white noise we use a single bias pattern tied to all
states of all words.

5.3. Outline of the training algorithm

In this subsecton we give an outline of the implemented
training algorithm.

1. Estimate linear spectral bias from speech pauses.

2. Form the linearly compensated model �xl as in (7).

3. For each training sample using �xl

� Perform forward backward algorithm and calculate

t(i; k).

� Calculate expected values as in (15) and (16).

� Update counters.

4. Estimate cepstral bias parameters (equations (11)-
(12)) for indpendent bias model, or (equations (18)-
(19)) for polynomial trend model.

5. If convergence is not met goto step 3.

6. EXPERIMENTAL RESULTS

The speech database consists of 21 confusable words, ut-
tered by 24 speakers (12 male/ 12 female), each word is ut-
tered two times by each speaker. The same speech corpus
is available under the following conditions, representing the
mismatched environment: Lombard (no noise added), 15 db
additive white noise and Lombard, 5 db additive white noise
and Lombard. Speaker independent clean speech recogni-
tion rate using an eight state left to right continuous density
HMM with 2 mixture components per state and de�ned in
a 12 dimension MFCC space is 61%. Bias training data
consists of one repitition of each word from a male and fe-
male speaker. Results of applying joint bias compensation
with independent cepstral bias model are shown in Table 1.
Note that for Lombard speech without noise only cepstral
compensation is applied. Table 2 is the same as Table 1, but
for the polynomial trend cepstral bias model. Table 3 shows
the results of applying cepstral compensation (independent
model)only to the noisy Lombard conditions.
In all experiments a signi�cant improvement in recogni-

tion accuracy is obtained using a limited amount of training
data in the mismatch environment, which indicates the ef-
�ciency of the proposed algorithm and its generalization
capability. For cepstral compensation i.e. only Lombard



e�ect both the independent and polynomial trend models
perform very similarly, with the polynomial model using a
smaller number of parameters, which shows the validity of
the polynomial assumption. For joint cepstral and spec-
tral bias the proposed approach signi�cantly outperform
both cepstral compensation and PMC (see, for example,
5dB noisy Lombard, 4 bias/word, 32.4%) than either in-
dependent cepstral bias model (19.6%) or PMC (19.0%).
However, in this case the independent bias model outper-
forms the polynomial trend model, this can be attributed to
the fact linear spectral compensated noisy Lombard speech
has a complex pattern in the cepstral which doesn't �t the
polynomial assumption. It is also interesting to note the ef-
fect of bias tying, in experiments with Lombard speech the
pattern B1 gave best performance, while for noisy Lombard
speech the patterns B8 and B4 gave superior results, which
can be attributed to the higher variability of the noisy Lom-
bard speech.

B8 B4 B1 No comp. PMC
Lombard 46.7 46.5 48.3 37.5 N.A.
15dB NL 36.8 38.9 36.8 9.6 23.8
5dB NL 33.1 32.4 30.1 6.6 19.0

Table 1. Recognition rates (%) obtained when applying the
joint bias compensation algorithm with independent cepstral
bias model for di�erent mismatch conditions. Results using
clean speech models and PMC are also shown.

B8 B4 B1 No comp. PMC
Lombard 46.9 46.7 47.6 37.5 N.A.
15dB NL 33.9 33.2 33.4 9.6 23.8
5dB NL 30.8 29.5 28.9 6.6 19.0

Table 2. Recognition rates (%) obtained when applying the
joint bias compensation algorithm with third order polynomial
trend cepstral bias model for di�erent mismatch conditions.
Results using clean speech models and PMC are also shown.

B8 B4 B1
15 dB NL 30.7 25.8 23.9
5 dB NL 20.3 19.6 17.4

Table 3. Recognition rates (%) for cepstral bias compensation
of noisy Lombard speech with independent cepstral bias model.

7. CONCLUSION

In this paper we present a uni�ed approach to joint com-
pensation of additive and convolutive biases in the CDHMM
framework. This is achieved by introducing state level addi-
tive biases in the mel cepstral and linear spectral domains.
ML bias parameter estimation and model compensation are
discussed, and a new polynomial trend bias model is pro-
posed. The approach is applied to noisy Lombard speech
recognition, and it signi�cantly outperform both cepstral
compensation and linear spectral compensation on a con-
fusable word recognition task.In this work we have used

a supervised version of the compensation algorithm and
treated only the mel cepstral coe�cients. Extensions to un-
supervised adaptation, and compensation of the di�erence
coe�cients in the proposed framework are given in [4].

REFERENCES

[1] Y.Gong,"Speech recognition in noisy environments: A
survey,"Speech communication, vol. 16, pp 261-291,
June 1995.

[2] M.Gales, S.Young, "Cepstral parameter compensation
for HMM recognition in noise," Speech Communica-
tion, Vol.12, No. 3, pp.231-239.

[3] A.Sankar, C.H.Lee, "Robust speech recognition based
on stochastic matching," Proc. ICASSP-95, vol. 1,
pp.121-124, 1995.

[4] M.A�fy, Y.Gong, and J.P.Haton, "A general joint addi-
tive and convolutive bias compensation approach ap-
plied to noisy Lombard speech recognition," Submit-
ted to IEEE Trans. Speech and Audio processing, May
1996.

[5] Y.Zhao,"An acoustic-phonetic based speaker adapta-
tion technique for improving speaker independent con-
tinuous speech recognition ," IEEE Trans. Speech and
Audio Processing, Vol. 2, No. 3, pp.380-394, July 1994.

[6] Y.Chen, "Cepstral domain talker stress compensation
for robust speech recognition," IEEE Trans. ASSP, vol.
36, pp.433-439, Apr. 1988.

[7] J.H.L.Hansen, "Morphological constrained feature en-
hancement with adaptive cepstral compensation for
speech recognition in noise and Lombard e�ect," IEEE
Trans. Speech and Audio Processing, Vol. 2, No.4 ,
pp.598-614, Oct. 1994.

[8] R.Rose, E.Hofstetter, D.Reynolds, "Integrated models
of signal and background with application to speaker
identi�cation in noise, " IEEE Trans. Speech and Au-
dio Processing, Vol. 2, No. 2, pp.245-257, Apr. 1994.

[9] M.Gales, S.Young, "A fast and �exible implementation
of parallel model combination," Proc. ICASSP-95, vol.
1, pp.133-136, 1995.


