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ABSTRACT

This paper describes a new algorithm to enhance and
recognise noisy speech when only the noisy signal is avail-
able. The system uses autoregressive hidden Markov mod-
els (HMMs) to model the clean speech and noise and com-
bines these to form a model for the noisy speech. The
probability framework developed is then used to reestimate
the noise models from the corrupted speech waveform and
the process is repeated. Enhancement is performed using
the Wiener �lters formed from the �nal clean speech mod-
els and noise estimates. Results are presented for additive
stationary Gaussian and coloured noise.

1. INTRODUCTION

The task of speech enhancement has been investigated by
many researchers [1, 2, 3, 4]. Much of this work requires es-
timates of the statistics of the clean speech and the interfer-
ing noise. While training databases are available to make
models of clean speech, the noise may only be available as
part of the noisy signal. Recently, researchers have con-
sidered estimating the noise directly from this corrupted
signal [2]. Their technique uses hidden �lter HMMs [3] to
model the clean speech and chooses the noise parameters
to give the best possible estimate of the clean signal.

This paper considers estimating the clean speech and
noise within an autoregressive HMM framework [5]. Au-
toregressive HMMs are used to model the speech and noise
and a combined model is built and used to recognise the
noisy speech. A new noise model is generated by summing
the expected value of the noise statistics given each obser-
vation and each HMM state, weighted by the likelihood of
being in each state. The process is repeated until the total
likelihood converges to a maximum.

Autoregressive HMMs are used because they segment
the speech into clusters of signals with similar autocorrela-
tion parameters. These are used to form Wiener �lters to
enhance the speech. A further bene�t of this approach is
that it provides speech recognition in unknown noise. Ad-
ditionally, the technique is potentially extendible to non-
stationary noise.

This paper describes the theory of the enhancement
system and details the results of experiments conducted
on speech degraded by additive, stationary Gaussian and
coloured noise. These show that the algorithm can e�ec-
tively enhance the speech and improve the recognition in

noise.
Additionally, the quality of the autoregressive parame-

ters determined by the algorithm is investigated by com-
paring the Itakura distortion measure [6] of the system to
that obtained from the iterative Wiener �lter system for-
mulated by Lim and Oppenheim [7]. It is seen that the
technique of using trained clean speech models yields au-
toregressive parameters that are better on average in the
Itakura sense than those that are estimated from the noisy
speech alone as in [7].

2. THE ENHANCEMENT SYSTEM

The enhancement system described in this paper is a ver-
sion of a system by Ephraim [8] modi�ed to use noise esti-
mates from the noisy speech. The basic algorithm is shown
in Figure 1.
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Figure 1. Enhancement Algorithm

There are three main components to the system: noise
estimation, recognition in noise and enhancement. These
are described in the following sections.



2.1. Recognition in Noise

The recognition system is similar to that described by
Ephraim [8]. It models the clean speech observations yT1
and noise observations vT1 by HMMs. These observations
are windowed speech samples. For additive noise, the noisy
speech is also modelled by an HMM with the pdf given by:

p(zT1 j�) =
X
�xT
1

TY
t=1

a�xt�1 �xtb�xt (zt) (1)

Where:

zT1 = a sequence of noisy observations
fzt; t = 1; : : : ; Tg

�xT1 = a sequence of noisy states f�xt; t = 1; : : : ; Tg
a�xt�1 �xt = transition probability from state �xt�1 to

state �xt
b�xt (zt) = pdf of the output vector zt from the state �xt
� = the model parameters

For the additive noise case, the following equations hold.
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a�xt�1 �xt = axt�1xta~xt�1 ~xt (3)

b�xt (zt) =

Z
b~xt (zt � yt)bxt(yt)dyt (4)

Here, at each time t, the state of the noisy process �xt is a
combination of the clean state xt and the noise state ~xt.
The pdf b�xt(zt) is Gaussian with zero mean and covari-

ance matrix S�xt given by:

S�xt = g
2

t Sxt + S~xt (5)

Here Sxt and S~xt are the covariance matrices of bxt and b~xt
respectively and g2t is a gain term to take into account the
mismatch between training data and testing data for the
clean speech models. The calculation of g2t and a mathe-
matically tractable technique to calculate the determinant
and inverse of S�xt are described by Ephraim [4]. For the
experiments described here, the gain was set to one since
the training and testing conditions were near-identical.

2.2. Noise Estimation

The noise model parameters are chosen to maximise the
likelihood of the noisy model given the observations. The
technique used is similar to that of Rose et. al. [9] in which
parameters are reestimated from noisy data. In [9] how-
ever, speech model parameters were reestimated whereas
this paper is concerned with reeestimating the noise model
parameters. Also, the models in this case are autoregres-
sive HMMs rather than the Gaussian mixtures used in [9].
The noise parameter reestimation formulas are derived

as follows. Consider the model described by Equation
1. The model parameters � are: faxt�1xt8xt�1xtg,

fa~xt�1 ~xt8~xt�1~xtg, fg
2

t ; t = 1; :::; Tg, fSx8xg and fS~x8~xg.
It is required to �nd a new estimate of �, �0, which max-
imises p(zT1 j�). This can be achieved after Baum et. al.
[10] by de�ning an auxiliary function

Q(�; �0) = Eflog(p(zT1 j�
0))g (6)

and maximising Q(�) with respect to �0. To reestimate
the noise parameters, it is only necessary to maximise Q(�)
with respect to fS~x8~xg and fa~xt�1 ~xt8~xt�1~xtg.

Consider �rst the maximisation of Q(�) with respect to
fa~xt�1 ~xt8~xt�1~xtg. Applying the method of [10] yields the
following equation for a new estimate of a~xt�1 ~xt .

a
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Now consider the reestimation of fS~x8~xg. Because the
noise is assumed to come from an autoregressive process,
each S~x can be calculated from the autocorrelation vector
of its noise. This is therefore the required statistic and is
denoted by r~x. Following similar reasoning to [9], it can
be reestimated using the following equation for each noise
state ~x.

r
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Once each r~x has been reestimated, it is used to form a
model of the noise spectrum which is required for Wiener
�ltering as well as being used to determine S~x which is
required for the noisy speech model and for gain determi-
nation.

Note that the forms of Equations 7 and 8 are reminiscent
of the usual parameter reestimation formula for autoregres-
sive HMMs.

For stationary noise, only maximisation with respect to
S~x is required. Furthermore, Equation 8 can be approxi-
mated by the following.

r
0

~x =

PT

t=1
Efr~xjzt; xt = x�t ; ~xt = ~x; �g

T
(9)

Here, x� = fx�t ; t = 1; : : : ; Tg is the most likely clean
speech state sequence. This can be found by performing a
Viterbi alignment on the data.

The term Efr~xjzt; xt = x�t ; ~xt = ~x; �g in Equa-
tion 9 is evaluated as the inverse Fourier transform of
EfjVj2jzt; xt = x�t ; ~xt = ~x; �g. This is calculated using
a similar technique to [4]. Each component k of V is eval-
uated by the following equation.
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(10)
Here wxt; ~xt;k is kth component of the Wiener �lter for
the composite state (xt; ~xt), fxt;k is the kth component of
the Fourier transform of the autoregressive coe�cients for
clean speech state xt and Zt;k is the kth component of the
Fourier transform of the noisy observation at time t. The
Wiener �lter in this case is designed to return the MMSE
estimator of the noise.



2.3. Wiener Filtering

Once the most likely state alignment has been obtained
from recognition using the noisy noisy models, non-causal
Wiener �lters are formed to return the MMSE estimate
of the speech. The �lters are formed using rxt , g

2

t and
r~xt from the most likely noisy state for each frame. This
technique assumes that one state sequence dominates the
pdf in (1). For the experiments conducted, little to no im-
provement in enhancement was observed by relaxing this
assumption and forming the weighted sum of Wiener �l-
ters.

3. RESULTS

The basic noise estimation algorithm was tested on a sim-
ple single speaker isolated digit recognition task. The data
was taken from the Noisex database [11]. The speech is
sampled at 16kHz and observation vectors are formed by
applying a Hamming window to 32ms frames at a frame
rate of 16ms. The order of the autoregressive models was
20. In these experiments, the e�ects of adding Gaussian
noise and coloured noise were studied. Only stationary
additive noise was considered.
The clean models were trained on 100 utterances of dig-

its (10 of each digit). One 8-state HMM was trained for
each of the ten digits and a 1-state HMM was trained for
the separating silence. The digits were grouped into �les
containing 20 each for training and testing purposes. Thus
continuous speech recognition was performed. Tests were
conducted on 100 di�erent utterances (10 of each digit).
Results for recognition in noise using the clean mod-

els and the the combined models determined by the al-
gorithm are given in Table 1. Coloured Noises A and B
correspond to Noise Type 06 (`Speech Noise') and Noise
Type 12 (`Lynx') from the NOISEX-92 database respec-
tively. The \% Error" �gure in Table 1 is derived using
the following formula.

% Error =
D+ S + I

N
� 100% (11)

Here D, S and I represent the number of deletions, substi-
tutions and insertions respectively and N is the number of
labels in the reference transcription. The number of dele-
tions, substitutions and insertions are also shown explicitly
in the table.
For the larger noise sources, recognition using the clean

models tended to produce an alignment in which a small
number of HMM states �tted most of the data. Therefore,
a transcription with a large number of deletions resulted.
The results show that the noise estimation is su�ciently

good to improve recognition in noise for this task. Up to
�ve iterations of the noise estimation algorithm were used.
Figure 2 shows the real and estimated (power) spectrum

of the 6dB Coloured Noise A on successive iterations of
the algorithm. It is seen that the estimated spectrum ap-
proaches the true spectrum in this case.
The quality of the enhanced speech was quite high, par-

ticularly for the Gaussian noise sources. For these ut-
terances, the main distortion was a slight mu�ing of the
sound. The enhanced coloured-noise speech was less clear,
particularly when recognition errors were made and the

Noise Source Clean Models Combined Models
% Error (D,S,I) % Error (D,S,I)

None (Clean) 0.0 (0,0,0) 0.0 (0,0,0)
36dB Gaussian 1.0 (0,1,0) 0.0 (0,0,0)
32dB Gaussian 22.0 (0,21,1) 0.0 (0,0,0)
18dB Gaussian 78.0 (48,29,1) 0.0 (0,0,0)
10dB Gaussian 95.0 (95,0,0) 0.0 (0,0,0)
6dB Gaussian 95.0 (95,0,0) 0.0 (0,0,0)
6dB Coloured A 90.0 (85,5,0) 5.0 (0,5,0)
6dB Coloured B 90.0 (87,3,0) 9.0 (0,6,3)

Table 1. Recognition in Noise
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Figure 2. Estimated and Real Power Spectrum of 6dB
Coloured Noise A

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Frame Number

D
is

to
rt

io
n

AR−HMM System             

Iterative Wiener Filtering

Figure 3. Itakura Distortion Measure for \1 6 3 5 2" 6dB
Coloured Noise A

wrong clean speech model was used for enhancement. Fig-
ures 4, 5 and 6 show the clean, noisy and enhanced spec-
trums for the �rst few digits of the speech distorted by
6dB Gaussian noise. Note that the silence sections of the
isolated digits are actually cleaner in the enhanced version.

To determine the quality of the autoregressive parame-
ters estimated by the algorithm, the Itakura distortion of
the system was compared to that from the iterative Wiener



�lter system formulated by Lim and Oppenheim [7]. The
results for a typical utterance are shown in Figure 3. It
is seen that the use of trained clean speech models yields
autoregressive parameters that are on better on average
than those estimated from the noisy speech.

4. CONCLUSIONS AND FURTHER WORK

A new algorithm that performs enhancement and recogni-
tion when only the noisy signal is available has been pre-
sented. It uses autoregressive HMMs to model the clean
speech and noise. These models are combined and the
resulting model used to recognise the speech. The noise
model is then reestimated by summing the expected value
of the noise statistics given each observation and each
HMM state, weighted by the likelihood of being in each
state. The process is then repeated until the likelihood
converges to a maximum. Enhancement is performed by
the application of Wiener �lters formed from the speech
and noise estimates to each frame. Results presented for
additive stationary Gaussian and coloured noise show the
algorithm to be e�ective. The algorithm is potentially ex-
tendible to non-stationary noise and this will be the subject
of future investigations. The operation of the algorithm on
larger databases will also be studied.
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Figure 4. Clean Speech (\1 6 3")
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Figure 5. Noisy Speech (\1 6 3") with 6dB Gaussian Noise
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Figure 6. Enhanced Speech (\1 6 3") from 6dB Gaussian
Noisy Speech


