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ABSTRACT

This paper describes a new algorithm to enhance and
recognise noisy speech when only the noisy signal is avail-
able. The system uses autoregressive hidden Markov mod-
els (HMMs) to model the clean speech and noise and com-
bines these to form a model for the noisy speech. The
probability framework developed is then used to reestimate
the noise models from the corrupted speech waveform and
the process is repeated. Enhancement is performed using
the Wiener filters formed from the final clean speech mod-
els and noise estimates. Results are presented for additive
stationary Gaussian and coloured noise.

1. INTRODUCTION

The task of speech enhancement has been investigated by
many researchers [1, 2, 3, 4]. Much of this work requires es-
timates of the statistics of the clean speech and the interfer-
ing noise. While training databases are available to make
models of clean speech, the noise may only be available as
part of the noisy signal. Recently, researchers have con-
sidered estimating the noise directly from this corrupted
signal [2]. Their technique uses hidden filter HMMs [3] to
model the clean speech and chooses the noise parameters
to give the best possible estimate of the clean signal.

This paper considers estimating the clean speech and
noise within an autoregressive HMM framework [5]. Au-
toregressive HMMs are used to model the speech and noise
and a combined model is built and used to recognise the
noisy speech. A new noise model is generated by summing
the expected value of the noise statistics given each obser-
vation and each HMM state, weighted by the likelihood of
being in each state. The process is repeated until the total
likelihood converges to a maximum.

Autoregressive HMMs are used because they segment
the speech into clusters of signals with similar autocorrela-
tion parameters. These are used to form Wiener filters to
enhance the speech. A further benefit of this approach is
that it provides speech recognition in unknown noise. Ad-
ditionally, the technique is potentially extendible to non-
stationary noise.

This paper describes the theory of the enhancement
system and details the results of experiments conducted
on speech degraded by additive, stationary Gaussian and
coloured noise. These show that the algorithm can effec-
tively enhance the speech and improve the recognition in

noise.

Additionally, the quality of the autoregressive parame-
ters determined by the algorithm is investigated by com-
paring the Itakura distortion measure [6] of the system to
that obtained from the iterative Wiener filter system for-
mulated by Lim and Oppenheim [7]. It is seen that the
technique of using trained clean speech models yields au-
toregressive parameters that are better on average in the
[takura sense than those that are estimated from the noisy
speech alone as in [7].

2. THE ENHANCEMENT SYSTEM

The enhancement system described in this paper is a ver-
sion of a system by Ephraim [8] modified to use noise esti-
mates from the noisy speech. The basic algorithm is shown
in Figure 1.

Initialise Noise Models
(assume all observations
are noise)

Perform recognition
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Reestimate noise models

o No
Likelihood converged ?
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speech and noise models

Enhance speech

Figure 1. Enhancement Algorithm

There are three main components to the system: noise
estimation, recognition in noise and enhancement. These
are described in the following sections.



2.1. Recognition in Noise

The recognition system is similar to that described by
Ephraim [8]. Tt models the clean speech observations yT
and noise observations v by HMMs. These observations
are windowed speech samples. For additive noise, the noisy
speech is also modelled by an HMM with the pdf given by:

p(={ V) = [ azemis.bs.(20) (1)

5T t=1

Where:
27 = a sequence of noisy observations

{Zt7t: 177T}
zT = a sequence of noisy states {Z;,t =1,...,T}
az,_, 7, = transition probability from state Z;—; to

state r¢
bz, (z:) = pdf of the output vector z; from the state z,
A = the model parameters

For the additive noise case, the following equations hold.

2l = yi+vi (2)

Azy_13¢ = QAuy_12A%4_134 (3
bey(z0) = / bey(ze — yobuy (y)dye  (4)

Here, at each time ¢, the state of the noisy process T is a
combination of the clean state x; and the noise state #;.

The pdf bz,(z.) is Gaussian with zero mean and covari-
ance matrix Sz, given by:

Sit = Q?Smt + Sit (5)

Here S;, and Sz, are the covariance matrices of b, and bz,
respectively and g7 is a gain term to take into account the
mismatch between training data and testing data for the
clean speech models. The calculation of ¢? and a mathe-
matically tractable technique to calculate the determinant
and inverse of S3, are described by Ephraim [4]. For the
experiments described here, the gain was set to one since
the training and testing conditions were near-identical.

2.2. Noise Estimation

The noise model parameters are chosen to maximise the
likelihood of the noisy model given the observations. The
technique used is similar to that of Rose et. al. [9] in which
parameters are reestimated from noisy data. In [9] how-
ever, speech model parameters were reestimated whereas
this paper is concerned with reeestimating the noise model
parameters. Also, the models in this case are autoregres-
sive HMMs rather than the Gaussian mixtures used in [9].

The noise parameter reestimation formulas are derived
as follows. Consider the model described by Equation
1. The model parameters A\ are: {az,_,z,VT:—17:¢},
{as, 5, V81 y, {6 = 1,...,TY, {S.Vz} and {S;V#}.
It is required to find a new estimate of X, A, which max-
imises p(z{|A). This can be achieved after Baum et. al.
[10] by defining an auxiliary function

QA N) = E{log(p(=1 X))} (6)

and maximising @Q(-) with respect to A’. To reestimate
the noise parameters, it is only necessary to maximise Q(-)
with respect to {S;Vz} and {az,_,, VT:i_1Z+}.

Consider first the maximisation of Q(-) with respect to
{as,_,# VZ:—1Z+}. Applying the method of [10] yields the
following equation for a new estimate of az,_,z,.
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Now consider the reestimation of {S;VZ}. Because the
noise is assumed to come from an autoregressive process,
each S;z can be calculated from the autocorrelation vector
of its noise. This i1s therefore the required statistic and is
denoted by rz. Following similar reasoning to [9], it can
be reestimated using the following equation for each noise
state .

= (%)
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Once each rz has been reestimated, it is used to form a
model of the noise spectrum which is required for Wiener
filtering as well as being used to determine Sz which is
required for the noisy speech model and for gain determi-
nation.

Note that the forms of Equations 7 and 8 are reminiscent
of the usual parameter reestimation formula for autoregres-
sive HMMs.

For stationary noise, only maximisation with respect to
Sz 18 required. Furthermore, Equation 8 can be approxi-
mated by the following.

. S Blralz e = o, 8= &,0)
r; = T (9)

Here, z* = {z{,t = 1,...,T} is the most likely clean
speech state sequence. This can be found by performing a
Viterbi alignment on the data.

The term FE{rz|z:,z: = =i, = Z,A} in Equa-
tion 9 is evaluated as the inverse Fourier transform of
E{|V|?|zt,z: = o, & = &,A}. This is calculated using
a similar technique to [4]. Each component k of V is eval-
uated by the following equation.

E{|Vi[*|ze, 20 = of, 84, A} = Wyt ik fat ke + |wm;‘,ft,th,k|2

(10)
Here wg, #, x 1s kth component of the Wiener filter for
the composite state (x¢,Z¢), fv,,x is the kth component of
the Fourier transform of the autoregressive coefficients for
clean speech state z; and Z; x is the kth component of the
Fourier transform of the noisy observation at time ¢. The
Wiener filter in this case is designed to return the MMSE
estimator of the noise.



2.3. Wiener Filtering

Once the most likely state alignment has been obtained
from recognition using the noisy noisy models, non-causal
Wiener filters are formed to return the MMSE estimate
of the speech. The filters are formed using r.,, g7 and
rz, from the most likely noisy state for each frame. This
technique assumes that one state sequence dominates the
pdf in (1). For the experiments conducted, little to no im-
provement in enhancement was observed by relaxing this
assumption and forming the weighted sum of Wiener fil-
ters.

3. RESULTS

The basic noise estimation algorithm was tested on a sim-
ple single speaker isolated digit recognition task. The data
was taken from the Noisex database [11]. The speech is
sampled at 16kHz and observation vectors are formed by
applying a Hamming window to 32ms frames at a frame
rate of 16ms. The order of the autoregressive models was
20. In these experiments, the effects of adding Gaussian
noise and coloured noise were studied. Only stationary
additive noise was considered.

The clean models were trained on 100 utterances of dig-
its (10 of each digit). One 8-state HMM was trained for
each of the ten digits and a 1-state HMM was trained for
the separating silence. The digits were grouped into files
containing 20 each for training and testing purposes. Thus
continuous speech recognition was performed. Tests were
conducted on 100 different utterances (10 of each digit).

Results for recognition in noise using the clean mod-
els and the the combined models determined by the al-
gorithm are given in Table 1. Coloured Noises A and B
correspond to Noise Type 06 (‘Speech Noise’) and Noise
Type 12 (‘Lynx’) from the NOISEX-92 database respec-
tively. The “% Error” figure in Table 1 is derived using
the following formula.

% Brror = 2191

- 100% (11)
Here D, S and I represent the number of deletions, substi-
tutions and insertions respectively and N is the number of
labels in the reference transcription. The number of dele-
tions, substitutions and insertions are also shown explicitly
in the table.

For the larger noise sources, recognition using the clean
models tended to produce an alignment in which a small
number of HMM states fitted most of the data. Therefore,
a transcription with a large number of deletions resulted.

The results show that the noise estimation is sufficiently
good to improve recognition in noise for this task. Up to
five iterations of the noise estimation algorithm were used.

Figure 2 shows the real and estimated (power) spectrum
of the 6dB Coloured Noise A on successive iterations of
the algorithm. It is seen that the estimated spectrum ap-
proaches the true spectrum in this case.

The quality of the enhanced speech was quite high, par-
ticularly for the Gaussian noise sources. For these ut-
terances, the main distortion was a slight muffling of the
sound. The enhanced coloured-noise speech was less clear,
particularly when recognition errors were made and the

Clean Models Combined Models
% Error (D,S,I) % Error (D,S,I)

Noise Source

None (Clean)

36dB Gaussian
32dB Gaussian
18dB Gaussian 78.0 (48,29,1)

0.0 (0,0,0) 0.0 (0,0,0)
1.0 (0,1,0)
22.0 (0,21,1)

6dB Gaussian 95.0 (95,0,0

(0,0,0)
000
10dB Gaussian 95.0 (95,0,0) 0:0 (0,0,0)
(0,0,0)
(0,5,0)
(0,6,3)

( )
6dB Coloured A 90.0 (85,5,0)
6dB Coloured B 90.0 (87,3,0)

Table 1. Recognition in Noise
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Figure 2. Estimated and Real Power Spectrum of 6dB
Coloured Noise A
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Figure 3. Itakura Distortion Measure for “1 6 3 5 2” 6dB
Coloured Noise A

wrong clean speech model was used for enhancement. Fig-
ures 4, 5 and 6 show the clean, noisy and enhanced spec-
trums for the first few digits of the speech distorted by
6dB Gaussian noise. Note that the silence sections of the
isolated digits are actually cleaner in the enhanced version.

To determine the quality of the autoregressive parame-
ters estimated by the algorithm, the Itakura distortion of
the system was compared to that from the iterative Wiener



filter system formulated by Lim and Oppenheim [7]. The
results for a typical utterance are shown in Figure 3. [t
is seen that the use of trained clean speech models yields
autoregressive parameters that are on better on average
than those estimated from the noisy speech.

4. CONCLUSIONS AND FURTHER WORK

A new algorithm that performs enhancement and recogni-
tion when only the noisy signal is available has been pre-
sented. [t uses autoregressive HMMs to model the clean
speech and noise. These models are combined and the
resulting model used to recognise the speech. The noise
model is then reestimated by summing the expected value
of the noise statistics given each observation and each
HMM state, weighted by the likelihood of being in each
state. The process is then repeated until the likelihood
converges to a maximum. Enhancement is performed by
the application of Wiener filters formed from the speech
and noise estimates to each frame. Results presented for
additive stationary Gaussian and coloured noise show the
algorithm to be effective. The algorithm is potentially ex-
tendible to non-stationary noise and this will be the subject
of future investigations. The operation of the algorithm on
larger databases will also be studied.
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Figure 5. Noisy Speech (“1 6 3”) with 6dB Gaussian Noise
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Figure 6. Enhanced Speech (“1 6 3”) from 6dB Gaussian
Noisy Speech



