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ABSTRACT

A signal-separation front-end based on adaptive decorre-
lation �ltering (ADF) was integrated with an HMM based
speaker independent continuous speech recognition system
for co-channel speech recognition. The ADF is improved
by addressing the adaptation gain for system stability and
e�ciency: an upper bound of adaptation rate is derived
for system stability, and an accelerated sequence of adap-
tation gain is introduced for system e�ciency. The sys-
tem was evaluated under simulated room acoustic condi-
tions with both time-invariant and time-varying channels.
It is shown that the system signi�cantly improved the sig-
nal-to-interference ratio and the recognition word accuracy,
and that the combination of the derived upper bound for
adaptation rate with the accelerated adaptation gain se-
quence achieved the best performance for system stability
and e�ciency.

1. INTRODUCTION

The state-of-the-art techniques in automatic speech recog-
nition (ASR) are still vulnerable in the presence of interfer-
ences [1]. Although many research e�orts are currently fo-
cused on broadband noise sources, a more di�cult problem
is the interference speech from competing talkers, or even
worse, if the talkers are moving around. In these scenarios,
robust speech recognition remains a challenging task.
In our recent work [2], a newly appeared signal processing

technique of adaptive decorrelation �ltering (ADF) [3] [4]
was used as a signal-separation front-end for improving the
signal-to-interference ratio (SIR) of the desired input speech
to an ASR system. In this scheme, two coexistent and in-
dependent speech sources are considered, and their convo-
lutive mixtures are acquired via two microphones. The ac-
quired signals are �rst ADF-processed to separate out the
co-channel speech signals; the separated signals are then an-
alyzed by a cross-spectra based source detection algorithm
[2] to determine the active region of each source. The sep-
arated speech signals in their respective active regions are
recognized by an HMM-based speaker-independent coutin-
uous speech recognition (SICSR) system [5]. Our experi-
ments in [2] showed that under a simulated acoustic envi-
ronment which is nonreverberant and time-invariant, when
the average SIR in both channels was around 8 dB, the in-
tegrated system achieved a recognition accuracy very close
to that of the interference-free condition.
In the current work, we extend the co-channel speech

recognition technique into handling time-varying coupling
channels that simulate certain room-acoustic environments.
Speci�cally, a stability condition of adaptation rate is de-
rived for the ADF algorithm; the e�ects of the adapta-
tion rate on the estimation accuracy of time-varying chan-
nels and co-channel speech recognition are evaluated; and
a strategy of adjusting adaptation gain for acceleration of
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Figure 1. The block diagram of the co-channel system

convergence is also described. This paper is organized into
six sections. In sections 2 and 3, the co-channel system and
the ADF algorithm are briey described. In section 4, an
upper bound of adaptation rate for the ADF is derived, and
the acceleration strategy for adaptation is proposed. Exper-
imental results are presented in section 5 and a conclusion
is made in section 6.

2. CO-CHANNEL SYSTEM

Assume that the coexistent signal sources are independent
to each other. For simplicity, our discussion is limited to
the two-source two-microphone case. Let x1(t) and x2(t) be
the signals generated by the independent sources 1 and 2,
and let y1(t) and y2(t) be the signals acquired by the micro-
phones that target the sources 1 and 2, respectively. Letting
the linear �lters A and B model the channel coupling ef-
fects, and assuming that there is no distortion between each
microphone and its target source, the co-channel system can
be described in the frequency domain as:

Y1(f) = X1(f) +A(f)X2(f)
Y2(f) = X2(f) +B(f)X1(f)

(1)

This co-channel system is illustrated in Fig. 1.

3. SIGNAL SEPARATION BY ADAPTIVE
DECORRELATION FILTERING

De�ne the �lter C(f) = 1 � A(f)B(f), and de�ne the
Fourier transforms of the signals v1(t) and v2(t) as:

V1(f) = Y1(f)�A(f)Y2(f)
V2(f) = Y2(f)�B(f)Y1(f)

(2)

It is easy to verify that Vi(f) = C(f)Xi(f), i = 1; 2.
Therefore, if the �lters A and B are known, the signals
from the sources 1 and 2 can be separated from the ac-
quired signals by Eq. (2). Furthermore, if C(f) is invert-
ible, the source signals xi(t) can be perfectly reconstructed

by X̂i(f) = C(f)�1Vi(f), i = 1; 2. The complete separation
system is illustrated by Fig. 2.
Since in most applications, the �lters A and B are time-

varying and unknown, reducing the cross-channel interfer-
ence requires reliable estimates of these �lters. It was shown
in [3] that if the source signals are zero-mean and uncorre-
lated and if the �lters A and B are approximated by the
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Figure 2. The block diagram of the source separation sys-
tem

FIR �lters a = [a0; � � � ; aNa�1]
T and b = [b0; � � � ; bNb�1]

T ,
then the �lter coe�cients can be estimated interatively by
the following equations, with the superscript (t) denoting
the estimates at time t, and T denoting vector transpose:

a(t) = a(t�1) + �(t)v
(t�1)

2 (t)v
(t�1)

1 (t)

b(t) = b(t�1) + �(t)v
(t�1)

1 (t)v
(t�1)

2 (t)
(3)

where
v
(t)

1 (�) = y1(�)� y
2
(�)Ta(t)

v
(t)

2 (�) = y2(�)� y
1
(�)T b(t)

with

y
1
(�) = [y1(�) � � � y1(� �Nb + 1)]T

y
2
(�) = [y2(�) � � � y2(� �Na + 1)]T

v
(t)
1 (�) = [v

(t)
1 (�) � � � v

(t)
1 (� �Nb + 1)]T

v
(t)
2 (�) = [v

(t)
2 (�) � � � v

(t)
2 (� �Na + 1)]T

The adaptation gain �(t) is de�ned as =t.

4. ADAPTATION GAIN

In implementing the ADF algorithm of Eq. (3), the adap-
tation rate  in the gain �(t) is proven to be an impor-
tant factor that determines the stability and e�ciency of
the system. Generally speaking, if the coupling-channel is
changing fast, using a larger  enables the system to fol-
low the time variation better. On the other hand, if the
coupling channel is changing slowly or remains steady, us-
ing a smaller  enables the system to obtain more stable
estimates of the channel. Furthermore, instability could be
resulted if  exceeds certain value.
In this section, a conservative upper bound for  is �rst

derived for ensuring system stability; then an accelerated
adaptation gain sequence other than �(t) = =t is discussed
to better accommodate time-varying coupling channels.

4.1. An Upper Bound for 

By expanding Eq. (3) and ignoring the quadratic terms of
a and b, the following equation is derived for updating the
�lter coe�cients:

w
(t)

= w
(t�1)

+


t
h(t)�



t
R(t)w

(t�1)
(4)

where

w(t) =

�
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b(t)

�
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�
y
2
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y
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2
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with
C1(t) = [y

1
(t); � � � ; y

1
(t�Na + 1)]T

C2(t) = [y
2
(t); � � � ; y

2
(t�Nb + 1)]T

De�ning �w(t) as the estimation error of w(t), it can be
derived that

Ef�w(t)g =
�
I �



t
EfR(t)g

�
Ef�w(t� 1)g

In order to maintain stability, it is necessary that
Ef�w(t)g be reduced toward zero for su�ciently large t.
To satisfy this condition,  should be limited under 2=�max,
where �max is the largest eigenvalue of EfR(t)g. Since
trace(EfR(t)g) = Navarfy2(t)g + Nbvarfy1(t)g � �max,
the following bound can be used for  to avoid the calcula-
tion of the eigenvalues:

0 <  <
2

Navarfy2(t)g+Nbvarfy1(t)g
= � (5)

Based on our experimental evaluation, the bound � works
well for the ADF algorithm in most situations.

4.2. Accelerated ADF (AADF)

For e�cient adaptation, it is desirable that when the pre-
vious estimates di�er from the current channel �lter coe�-
cients signi�cantly, a larger adaptation gain is applied; on
the other hand, when the previous estimates are close to the
current channel �lter coe�cients, a smaller adaptation gain
is applied. Therefore, instead of using �(t) = =t as the
adaptation gain, we can apply Kesten's procedure of accel-
erating convergence [6] to modify the estimation equations
as:

a
(t)

k = a
(t�1)

k + 

ia;k(t)
v
(t�1)

2 (t� k)v
(t�1)

1 (t)

b
(t)
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(t�1)

k + 

ib;k(t)
v
(t�1)

1 (t� k)v
(t�1)

2 (t)
(6)

where

ia;k(1) = 1; k = 0; 1; � � � ; Na � 1
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�
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As de�ned in Eq. (6), the signs (positive, negative) of
the consecutive correlation terms controls the adjustment
of the adaptation gain for each �lter coe�cient, where the
gain decreases only when the sign changes. For stability, the
adaptation rate  should also be bounded by � as derived
in section 4.1.

5. EXPERIMENT

In order to handle time-varying channels, the ADF and
AADF were implemented blockwisely (referred to as BADF
and BAADF, respectively), i.e., the aquired signals from the
two microphones were synchronously blocked into frames;
the adaptation rate was decided in each frame; and the time
t in both Eqs. (3) and (6) was reset to zero at the begin-
ning of each frame. The estimates of a and b at the end
of the current frame were used as the initial values of the
next frame, and the initial values in the �rst frame were
simply set to zero. A subset of TIMIT database was cho-
sen to form 156 sentence pairs as the source signals in the
following experiments.



Figure 3. Room-acoustic environment 1, (A1; B1)

5.1. Stability and Adaptation Rate

In this experiment, one set of co-channel signals was pro-
cessed by BADF, with each frame containing 200 samples.
Three adaptation rates  were tested:

1 =
2p

NaNbvarfy1gvarfy2g

2 =
2

max
�
Navarfy2g; Nbvarfy1g

�
3 =

2

Navarfy2g+Nbvarfy1g

The stability of the system was examined after each step of
adaptation (i.e., every sample). Once the system became
unstable, the �lter coe�cients were reset to zero and the
estimation restarted. In more than 40 million iterations,
the system was reset 23 times when using 1, 3 times when
using 2, and 0 times when using 3. The bound in Eq. (5)
is therefore considered as a safe choice.

5.2. Simulation of Acoustic Paths

Two pairs of FIR �lters (A1; B1) and (A2; B2) were mea-
sured to simulate the acoustic paths in the room environ-
ments described in Figs. 3 and 4:

A1 : from talker 2 to microphone 1 in Fig. 3

B1 : from talker 1 to microphone 2 in Fig. 3

A2 : from talker 2 to microphone 1 in Fig. 4

B2 : from talker 1 to microphone 2 in Fig. 4

The distortions from talker 1 to microphone 1 and from
talker 2 to microphone 2 in both environments were as-
sumed neglectable. In the experiments described below, the
�rst L samples (L was varied in di�erent experiments) of
the impulse response of each �lter were included in the FIR
�lter for generating the co-channel signals from the source
signals.

5.3. Estimation Accuracy and Adaptation Gain

In this experiment, the co-channel speech signal pairs were
generated by (A1; B1) (L=100) from the source signals, and
were processed by the following three schemes:

1. the BADF;  = �

2. the BADF;  = 0:5�

3. the BAADF;  = 0:5�

To evaluate the performance of the BADF, the squared es-
timation error of the �lter coe�cients, E(t), was de�ned
as:

E(t) =
�
�a

(t)
�T
�a

(t)
+
�
�b

(t)
�T
�b

(t)

Figure 4. Room-acoustic environment 2, (A2; B2)
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Figure 5. The squared estimation error versus the num-
ber of processed frames: dotted curve: BADF with  = �;
dashed curve: BADF with  = 0:5�; and solid curve:
BAADF with  = 0:5�

with

�a
(t)

= a
(t) � a

�

and �b
(t)

= b
(t) � b

�

where � denotes the true �lter coe�cients, and E(t) was
measured at the end of each frame. The relation between
E(t) and the number of processed frames is ploted in Fig. 5
for all three cases. Since the �lter coe�cients were all ini-
tialized as zeros, the beginning part of each curve repre-
sents the system behavior for a fast-changing channel, and
the ending part represents the system behavior for a time-
invariant channel. Comparing the results of the BADF with
 = � and 0:5�, E(t) was reduced much faster at the be-
ginning with  = �, but became more stable at the end
with  = 0:5�. The results also showed that the BAADF
with  = 0:5� could follow the channel variation as well
as BADF with  = �, and was as stable as BADF with
 = 0:5� when the channel became steady.

5.4. Time-Invariant Channel Simulation

In this experiment, the co-channel speech signals were pro-
cessed by BADF with  = 0:1�, and then recognized by
the SICSR system based on the HMM of phone units [5].
The cepstrum coe�cients of the PLP analysis (8th order)
and log energy were taken as instantaneous features and
their �rst-order 50 msec temporal regression coe�cients as
dynamic features. The recognition task has vocabulary size
of 853 and grammar perplexity of 105. Three sets of co-
channel signals were generated, processed, and then recog-
nized:



Table 1. The SIR and WRA of the simulated time-
invariant channel conditions

Channel 1 Channel 2
Clear source signals -- 91.2 dB

Filter length = 100
SIR before processing 10.9 dB 11.7 dB
SIR after processing 25.8 dB 25.2 dB
WRA before processing 41.7 % 38.1 %
WRA after processing 85.5 % 83.8 %

Filter length = 200
SIR before processing 10.9 dB 11.6 dB
SIR after processing 25.4 dB 25.1 dB
WRA before processing 41.8 % 36.1 %
WRA after processing 84.2 % 82.6 %

Filter length = 100
SIR before processing 20.9 dB 1.7 dB
SIR after processing 35.2 dB 17.5 dB
WRA before processing 64.6 % -10.1 %
WRA after processing 90.0 % 71.0 %

1. The coupling �lters were A1 and B1 with L=100. The
source signals in both channels had the same energy
level.

2. The coupling �lters were A1 andB1 with L=200, where
the magnitude of the last 100 samples were attenuated
by 1/3 to reduce the reverberation e�ect. The source
signals in both channels had the same energy level.

3. The coupling �lters were A1 and B1 with L=100. The
source signals in channel 2 were 10 dB weaker than the
source signals in channel 1.

The SIR and word recognition accuracy (WRA) before and
after processing for each case are summarized in Table 1.
It can be observed that the system improved both SIR and
WRA signi�cantly under the simulated conditions.

5.5. Time-Varying Channel Simulation

In this experiment, when producing the co-channel speech
signals, the coupling �lters were made to change from
(A1; B1) toward (A2; B2) in an N -sample interval using lin-
ear interpolation, and then change back at the same rate.
This �lter-changing process continued until the end of sig-
nals. Two sets of co-channel speech signals were produced
with N = 104 and N = 106, respectively (corresponding
to 1 and 100 seconds with a 10 kHz sampling rate). Each
set of speech signals were processed by the following three
schemes:

1. the BADF,  = �

2. the BADF,  = 0:1�

3. the BAADF,  = 0:1�

The separated signals within their respective active regions
were then recognized by the SICSR system described in the
previous experiment. The SIR and WRA are summarized
in Table 2. It is seen that in the fast-changing environment,
the BADF with  = � performed better than the BADF
with  = 0:1�, but not as well in the slowly-changing en-
vironment, both in terms of SIR and WRA. The BAADF
with  = 0:1� achieved similar performances as the bet-
ter one of the two BADFs in both environments, which is
consistant with the result in section 5.3.

6. CONCLUSION

The current work shows that the proposed co-channel
speech separation front-end is promising for robust speech
recognition under the simulated room-acoustic environ-
ments. The combination of the derived upper bound for

Table 2. The SIR and WRA of the simulated time-varying
channel conditions

SIR WRA
Clear source signals -- 91.2 dB

Fast-changing channel (N = 104 ' 1sec)
Before processing 14.9 dB 58.4 %

BADF,  = � 19.2 dB 78.0 %
BADF,  = 0:1� 17.1 dB 68.4 %
BAADF,  = 0:1� 18.8 dB 76.4 %

Slowly-changing channel (N = 106 ' 100sec)
Before processing 15.1 dB 59.4 %

BADF,  = � 21.9 dB 84.8 %
BADF,  = 0:1� 25.7 dB 88.7 %
BAADF,  = 0:1� 24.9 dB 87.6 %

the adaptation rate with the accelarated adaptation gain
sequence achieved the best performance for system stabil-
ity and e�ciency. Extended research is currently underway
to explore the reverberation e�ects in the cross-channel in-
terference.
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