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ABSTRACT

The Maximum a posteriori hypothesis is treated as the
decoded truth in speech recognition. However, since the
word recognition accuracy is not 100%, it is desirable to
have an independent con�dence measure on how good the
maximum a posteriori hypothesis is relative to the spoken
truth for some applications. E�orts are in progress [1, 2,
3] to develop such con�dence measures with the intent of
applying it to assesment of con�dence of whole utterances
[4], rescoring of N-best lists, etc. In this paper, we explore
the use of word-based con�dence measures to adaptively
modify the hypothesis score during search in continuous
speech recognition: speci�cally, based on the con�dence of
the current sequence of hypothesized words during search,
the weight of its prediction is changed as a function of the
con�dence. Experimental results are described for ATIS
and SwitchBoard tasks. About 8% relative reduction in
word error is obtained for ATIS.

1. METHOD

1.1. Assigning Con�dence

Given a decoded word string w1; w2; ::wi; ::wN , we would
like to assign a con�dence score, C(wi) between 0 and 1,
that the wi is correct. Let X be a binary random variable,
such that

X =

�
1 if wi is correct
0 otherwise

(1)

Let y be a vector of scores for the hypothesized word wi
during search. If Y is a random vector which takes on
values y, We de�ne C(wi) as the posterior probability that
the word is correct given features y of the word, p(X =
1=Y = y(wi)). One could obtain the posterior probability
using Bayes rule as follows:

C(�) = p(X = 1=Y = y(�)) =
p(X = 1)p(y(�)jX = 1)

p(y(�))
(2)

by estimating the conditional densities p(y(�)jX = 1) and
p(y(�)jX = 0) and prior probabilities p(X = 1). However,
in this paper we use a decision tree approach to estimate
the posterior probability p(X = 1=Y = y(�)), directly.
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To estimate C(wi), we grow a binary decision tree which
asks a series of univariate questions of the form "is yi > �i",
about each of the components of the feature vector y. At
each node of the tree, each question of the form "is yi >
�i", leads to a binary split of the data into two regions,
say L and R. Let P be the parent of Y. The decision tree
is grown iteratively by �nding that question at each node
which minimizes the average conditional entropy of X given
the split of P to L and R:

H(X=Y = P;"Yi > �i?") =

p(Y = L=Y = P )H(X=Y = L;Y = P ) +

p(Y = R=Y = P )H(X=Y = R; Y = P )

where Y = P;L, or R implies y 2 P;L or R, respectively.
Growth of the decision tree is stopped when the decrease
in conditional entropy due to the best question is less than
a stopping threshold. If L(y) denotes the discrete label of
Y corresponding to the leaf of the tree given Y = y, the
conditional entropy Hd(X=Y ) given the decision tree is:

Hd(X=Y ) =

��Y=L(y)p(L(y))�x=(0;1)p(x=L(y))log(p(x=L(y))) (3)

After the decision tree is grown, given a decoded word w

and the set of features y, the con�dence that the word is
correct is taken as the empirical probability that X = 1 at
the leaf of y, i.e., C(w) = p(X = 1=L(y)).

1.2. Using con�dence to guide search

Given acoustic data A corresponding to an utterance, the
maximum a posterioriword sequenceW = w1w2::wn is that
which maximizes the conditional probability P(W/A). By
Bayes rule

P (W=A) =
P (A=W )P (W )

P (A)
(4)

Since P(A) is independent of the hypothesized word se-
quence, the maximization is simply done over the numerator
of (4). In practice, the two components P (A=W ) (acoustic
match score) and prior probability of the word sequence
P (W ) (language model score) are weighted as follows:

Score(W=A) = P (A=W )� � P (W )� (5)

� and � are �xed constants for the search. Given a hypothe-
sized word sequence, Wi = w1w2::wi, and the corresponding



acoustic segment Ai
1, the score of a hypothesized extension

w1w2::wiwi+1 is

Score(Wi+1=A
i+1
1 ) =

Score(Wi=A
i
1) � P (A

i+1
i

=wi+1)
� � P (Wi+1)

� (6)

We will call Wi the word history for extension Wi+1. In
general, both � and � could be functions of con�dence of
Wi+1, C(Wi+1). In this paper, We keep � constant and
propose � to be a function of the con�dence of the word
history as follows:

Score(Wi+1=A
i+1
1 ) =

Score(Wi=A
i
1) � P (A

i+1
i =wi+1)

� � P (Wi+1)
�(C(Wi))

(7)

One could assign various functional forms to � as a function
of C(Wi) and C(Wi) as a function of the individual C(wi).
First, we choose C(Wi) = C(wi), implying that the con-
�dence of the word history is only a function of the most
recent word in the word history, C(Wi). The motivation
for this is based on the following observation. Correctness
of wi has a signi�cant impact on the correctness of wi+1:
for example, on a subset of SwitchBoard dev-tst data (80%
word accuracy), wi+1 is correct about 87% of the time when
wi is correct and only 48% of the time when wi is incorrect.
Second, since P (Wi+1) is less than 1, �(C(Wi)) should be
less than �0 when C(Wi) > C0(Wi) so that predictions by
more con�dent histories have a higher score. Thus, in this
paper we use the following functional forms:

�(C(Wi)) = �0 �
2

1 + exp(� � (C0(Wi)�C(Wi)))

(8)

C(Wi) = C(wi) (9)

C0(Wi) = C0(wi) = p(X = 1) (10)

The speci�c functional form for � was chosen so that �

changes smoothly around �0 with the gradient concentrated
around the prior probability that the history is right, i.e.,
p(X = 1). (p(X = 1) is set equal to the relative frequency
of correct words in the training data when � = �0). The
constant  controls the rate of change around �0. Figure 1
shows an example of the variation of � as a function of
C(Wi) for some values of .
The notion of language model weight � dependent upon

the current word sequence Wi+1 and the acoustics of the
current word Ai+1

i has been described in the past [7]. How-
ever, they estimate � jointly with the acoustic parameters
by de�ning a new objective function that measures the dis-
tance between the truth and alternate hypotheses in an
N-Best list. While in this paper, � is a function of the
Con�dence of the Word history Wi and is estimated in-
dependently of the acoustic model parameters by building
a decision tree. Also, the functional dependencies (8) are
di�erent in this paper.

2. RESULTS

Experiments were performed on the ATIS speech recogni-
tion task and SwitchBoard task. ATIS is a medium vocab-
ulary (1700 words) spontaneous speech recognition task to
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Figure 1. � as a function of C(Wi),  = 1:0 (solid);

 = 2:0 (dash-dot);  = 3:0 (dash). �0 = 1:0 and

C0(Wi) = 0:63.

get information about airline travel. A baseline ranks-based
left-context only system [5] was trained using 16,223 train-
ing utterances from the ARPA ATIS training data with
2153 context dependent states and 28,451 Guassian pro-
totypes. A class-based trigram model was built using the
same training utterances. Test set contained 930 utterance
from the ARPA ATIS test set containing 7881 words. The
baseline system performance for this task was 6.27% word
error. For the purpose of this paper, we picked a baseline
ATIS system for which the acoustic models were not our
best models.

To grow the decision tree, Word features were generated
for about 49000 words by decoding 6000 of the 16223 train-
ing utterances using Wall Street Journal (WSJ) acoustics
and a language model built using the remaining 10223 ut-
terances to eliminate any bias. The features used to derive
the questions were the average likelihood score of a word,
LS, i.e.,

LS(wi) =
Score(Wi=Ai)� Score(Wi�1=Ai�1)

ti � ti�1
(11)

where ti; ti�1 are the most likely ending times of hypothe-
sized word strings Wi andWi�1, respectively. In our search,
we do a fast match based on approximate acoustic models
to get a list of candidate words (FM list), followed by a
language model pruning of the fast match list to get a list
of candidates to perform the detailed acoustic match (DM
list). Two additional features used were the size of the
fast match list (FMC) and the size of the detailed match
list (DMC). FMC provides a measure of confusability of
words in the match list purely based on an acoustic score,
while DMC provides a measure of confusablity of words in
the match list based on a combined acoustic and language
model score. These features were chosen amongst others
based on a normalized mutual information measure (or ef-



�ciency [1]) de�ned as:

Efficiency =
H(X)�Hd(X=Y )

H(X)
� 100 (12)

where H(X) is the entropy at the root of the decision tree
and Hd(X=Y ) is the conditional entropy of X given the
decision tree. An example of a partial decision tree is shown
in Figure 2. for the switchboard task.

Feature Set E�ciency

LS 6.5%

LS, FMC, DMC 18.5%

Table 1. E�ciency as a function of the feature set

Table 1 shows the normalized mutual information for two
sets of features measured on an independent test set (7420
words). Note that using the two additional variables FMC
and DMC improves the e�ciency from 6% to 18%.

Feature set  Error rate

baseline 0.0 7.00%

LS 1.2 6.75%

LS, FMC, DMC 1.2 6.62%

Table 2. Error rate as a function of features: WSJ

acoustics

To carry out the recognition experiments, IBM's stack
search algorithm [6] was modi�ed according to section 2.2.
In the �rst experiment, ATIS test data was decoded using
Wall street Journal acoustic models and a trigram Language
model built using 10223 ATIS training utterances. Recog-
nition results for the ATIS test data using Wall Street Jour-
nal Acoustic models are shown in Table 2.  = 0:0 sets the
value of � to the constant �0 and thus simulates recogni-
tion without the decision tree for word con�dence. Note
that an improvement of about 5.4% is obtained by using a
feature set with LS, FMC and DMC. Furthermore, for the
same value of  = 1:2, adding features FMC and DMC to
LS yields a small gain, consistent with the Mutual Infor-
mation measure. In the second experiment, ATIS test data
was decoded using ATIS trained acoustic models. Although
the training of the decision tree was done using Wall Street
Journal acoustics, We get similar reductions (8%) in the
decoding error rate when ATIS trained acoustic models are
used to decode the test data as shown in Table 3. Note that
the value of  e�ects the error rate. The best value of  for
this experiment was 1.3. Increasing it above 1.3 degraded
the performance. For the SwitchBoard task, 2800 dev-tst

 Error rate

0.0 6.27%
1.2 5.84%

1.3 5.74%

Table 3. Error rate as a function of  : ATIS

acoustics

94 sentences (1698 conversation sides) were used to train
the decision trees and 184 held out dev-tst 94 sentences
were used as test set. The recogntion experiments were
carried out on the same 184 dev-tst 94 sentences containing
1258 words. The baseline system for this task was a left-
right context system with 6945 context dependent states
and 126,734 Guassian prototypes. A trigram LM built us-
ing 1.8 million words was used for the language model. The
baseline performance on this test set is 55.01% word error.
Table 4 shows the e�ciency for three sets of features.

When FMC and DMC are added to LS, the e�ciency is
smaller (11.5%) compared to the ATIS task. Adding ad-
ditional features such as Detailed match score (DM) and
Language model score (LM) did not help. They degrade
the e�ciency on the test set. Given the small di�ernce be-
tween the �rst two sets of features we also looked at the
hard classi�cation performance for this task.
De�ne, % rejects (% of correct words classi�ed as incor-

rect) as:

= (1�
�(x=1;y)2T I[p(X = 1=L(y)) � �]

�(x=1;y)2T 1
) � 100 (13)

Where T is the test set and I is an indicator function. De-
�ne, % False alarms (% of incorrect words classi�ed as cor-
rect) as:

= (1�
�(x=0;y)2T I[p(X = 0=L(y)) > (1� �)]

�(x=0;y)2T 1
) � 100 (14)

Another way to evaluate the goodness of the feature sets
in predicting word con�dence is by plotting the classi�ca-
tion performance (%rejects .vs. %false alarms) at various
thresholds. Figure 2. shows %rejects as a function of %false
alarms for various values of the hard classi�cation threshold
�. The ideal performance is the case when %rejects can be
reduced without increasing %false alarms. Thus, the closer
the curve to the left and bottom coordinate axes the bet-
ter the feature set. Note that for the three sets of features
shown, the feature set consisting of LS, FMC and DMC
is better. This is consistent with the Normalized mutual
information measure. A partial decision tree using LS and
FMC features is shown in Figure 3. As we had expected the
Word Con�dence is higher when the likelihood slope is high
(0.82 when LS > 0:05) and a lower con�dence is predicted
when the likelihood slope is small and negative (0.47 when
LS < �0:08). The decision tree with LS, FMC and DMC
features was used for recognition experiments.

Feature Set E�ciency

LS 8.25%

LS, FMC, DMC 11.5%

LS, FMC, DMC, DM, LM 9.11%

Table 4. E�ciency as a function of the feature set:

Switchboard task

Table 5 shows the recognition results for the switchboard
task.  = 1:0 was the best amongst the values tried. Only
two values are shown in the table. The reduction in error
rate is small relative to the improvement for the ATIS task.
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Figure 2. Classi�cation performance for the Switch-

Board task. Solid line - LS only; Dash line - LS,
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and LM

0.63
LS > 0.017
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LS > -0.08

0.47
FMC  > 8198

0.51 0.41
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LS > 0.05
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0.82
LS > 0.08

Figure 3. A partial decsion tree with LS and FMC

features for the SwitchBoard task. Con�dence value

and the best question are shown for each node.

Right branch is the yes answer to the question.

 Error rate
0.0 55.01%

1.0 54.37%

1.3 54.61%

Table 5. Error rate as a function of  : SwitchBoard

task

3. CONCLUSIONS AND DISCUSSION

Noting that the correctness of decoded hypothesis e�ects
the correctness of its prediction we explore a method to as-
sign a con�dence between 0 and 1 to decoded hypothesis at
a given point in search, and use the con�dence to gracefuly
modify the weight of its prediction as a function of its con-
�dence. We show an improvement of about 8% relative for
the ATIS task and negligible improvement for the Switch-
Board task. A possible reason for the small improvement
on the SwitchBoard task is smaller training data size for
the decision trees to estimate con�dences. Furthermore, in
the current scheme the weight of the prediction is changed
by changing the weight on the Language Model P (Wi+1)
in equation (7).This suggests that the Language Model is
trusted for its correctness. So, another possible reason is
that the Language Model is weaker for the SwitchBoard
task leading to a negligible improvement. One possible
mechanism to o�set this weakness is to make � a function
of C(Wi+1), i.e., estimate the con�dence based on the pre-
dicted word wi+1 and include Language Model features as
questions in the decision tree. An initial experiment in this
direction, led to an error rate of 5.7% compared to 5.79%
by using word history only.
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