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ABSTRACT

This paper proposes a probabilistic framework to de�ne
and evaluate con�dence measures for word recognition. We
describe a novel method to combine di�erent knowledge
sources and estimate the con�dence in a word hypothesis,
via a neural network. We also propose a measure of the joint
performance of the recognition and con�dence systems. The
de�nitions and algorithms are illustrated with results on the
Switchboard Corpus.

1. INTRODUCTION

In the last few years, a lot of research has been devoted to
the development of con�dence scores associated with the
outputs of automatic speech recognition (ASR) systems.
These scores were used mostly to help spot keywords in
spontaneous or read texts, and to provide a basis for the
rejection of out-of-vocabulary words (e.g. [4-11]). Many
other ASR applications could also bene�t from knowing
the level of con�dence in correct recognition. For exam-
ple, text-dependent speaker recognition systems could put
more emphasis on words recognized with higher con�dence;
unsupervised adaptation algorithms could adapt the acous-
tic models only when the con�dence is high; human-made
transcriptions could be veri�ed by ASR systems outputting
their con�dence in the transcribed word sequence, etc. In
addition, a measure of the global con�dence in recognition,
i.e. the recognition con�dence for the entire database, could
be a useful tool to compare di�erent recognizers that have
similar recognition performance.

We propose a probabilistic framework for de�ning and
evaluating con�dence measures, as well as a novel method
for estimating con�dence. More speci�cally, we describe:

� A de�nition of word correctness based on time-
alignments.

� A de�nition of con�dence in a word hypothesis.

� A method for combining di�erent knowledge sour-ces
and estimating the con�dence in a word hypothesis via
a neural network.

� Three alternative metrics to measure the performance
of con�dence estimators.

� A joint performance criterion that combines the word
error-rate (WER) and the con�dence in word hypothe-
ses.

The de�nitions and algorithms proposed in the paper are
illustrated with experiments on the Switchboard Corpus [1].

2. WORD CORRECTNESS

Given a reference and a hypothesis word string, each word
in the hypothesis can be labeled as correct or incorrect.
Many applications (e.g. speaker identi�cation, adaptation
of acoustic models, ...) require a de�nition of word cor-
rectness that involves time-alignments. We provide such a
de�nition. Namely, we say that a hypothesized word, hi,
is correct i� there exists a word in the reference string, rj,
such that (1) hi and rj are identical and (2) hi and rj are
correctly time-aligned. For these two words to be correctly
time-aligned, we require that (a) more than 50% of hi over-
lap with rj , (b) more than 50% of rj overlap with hi, and (c)
no other reference word overlap by 50 % or more with hj.
This last condition makes it possible to identify deletions.
Examples are given in Fig.1.
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Figure 1. Examples of words labelled as correct
or incorrect, according to our de�nition of word
correctness ((1) substitution, (2) deletion, (3) in-
sertion, (4) bad time-alignment). The small/large
vertical bars indicate frame/word boundaries.

3. WORD CONFIDENCE

Given the above de�nition for the correctness of a word,
we de�ne the con�dence in a word hypothesis as the pos-
terior probability that the word is correct, given a set of
observations relative to this word.



4. WORD CONFIDENCE METRICS

4.1. Unnormalized Con�dence Metrics

The same way that a metric, the word error-rate, is tradi-
tionally used to evaluate the word recognition performance
of a recognizer, a metric must be de�ned to evaluate the
word con�dence performance of a recognizer. We propose
three such metrics:

� the Mean Square Error (MSE):
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� the Cross-Entropy (CREP):
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� the Classi�cation Error-Rate (CER):
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where, cw denotes the con�dence in word w, �w denotes
the word correctness (0 or 1), and t(cw) is 1 when cw is
greater than some threshold, � , and 0 otherwise. For N
large, the CER is the probability of error obtained when
hard-thresholding the con�dences, cw, and classifying the
words as correct or incorrect. Assuming that the costs for
misclassifying correct and incorrect words are equal, we set
� to 0.5.
Accordingly, con�dence measure algorithms can be devel-

oped to minimize the MSE, maximize the CREP, or mini-
mize the CER.

4.2. Normalized Con�dence Metrics

The above metrics could potentially reect arti�cially good
performance if the recognizer outputs incorrect hypotheses
with high con�dence. We address this issue by normaliz-
ing the metrics by the values they assume when estimated
with the prior probability of correctness as the sole knowl-
edge source. These normalization factors are obtained by
replacing cw with Pc = (1 � WER) in the above de�ni-
tions, where Pc is the a-priori probability that any word
is correct and WER is the word error-rate. For example,
MSE(priors) = Pc(1 � Pc), and CER(priors) = 1 � Pc (as-
suming Pc � (1 � Pc)). The metrics estimated from the
priors only correspond to the best performance a con�dence
algorithm can achieve without extra word-dependent infor-
mation.
The normalized con�dence metric based on the MSE can

then be expressed as

Normalized MSE =
MSE(priors) - MSE(posteriors)

MSE(priors)
:

The normalized CREP and CER are de�ned similarly.

5. A JOINT PERFORMANCE METRIC

The above metrics evaluate the performance of the con�-
dence estimator only. However, applications involving the
comparison of several recognizers performing at di�erent
error-rates require a metric that characterizes the overall
performance of the recognizer, that is a metric that com-
bines word error-rate and word con�dence.
To address this issue, we propose a new criterion that

weights the word correctness by the word con�dence and
averages over the words:

� the NEt Recognition Performance (NERP):

1

N

X
w

�
�wcw + (1� �w)(�cw)

�
:

With its penalization term for incorrect words (�cw), the
NERP intrinsically encodes the word error-rate and defeats
gamesmanship scenarios.

6. COMPUTATION OF CONFIDENCE

The features that indicate the correctness of a word hy-
pothesis are numerous and di�erent in nature. For exam-
ple, some might take on real values, some might be integers.
To take advantage of this diversity, we propose to combine
di�erent features with a multi-layer neural network, as il-
lustrated in Fig.2.
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Figure 2. Neural network architecture for word con-
�dence estimation.

The inputs to the net are the (normalized) features rela-
tive to a word, and the desired output is the word correct-
ness: 0 or 1. Under these conditions, and assuming that the
net is trained to minimize the MSE or maximize the CREP,
the output of the net estimates the con�dence in the word
hypothesis (according to our de�nition) [2, 3].

6.1. Features

The performance of the neural network clearly depends on
the quality of the features used as knowledge sources. In
our experiments, we implemented 13 features. These are by
no means exhaustive.

6.1.1. Acoustic Features

The acoustic features we implemented measure the nor-
malized log-likelihood (LL) of the acoustic realization of
each word. They di�er by the models used to normalize
the LLs and by the way the frame-level LLs are combined.
Normalization was done either with context-independent
HMMs (CI HMMs) [4] or with a Gaussian mixture model
(GMM). The frame-level LLs were combined at the word
level, phone level, or phone-state level. This gives six possi-
ble features of which �ve were implemented. For example,
the phone-averaged, GMM-normalized feature is de�ned as:
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where N' is the number of phones in the word, Nfj is the
number of frames in phone j, xi is the acoustic vector corre-
sponding to frame i of the word, and �Hi and �G represent,
respectively, the HMM state Viterbi-decoded for frame i
and the GMM.



6.1.2. Language Model Features

We implemented four features based on the language
model (LM):

� Trigram LM log-probability.

� Order of the n-gram used in the LM.

� Reverse trigram LM log-probability.

� Order of the n-gram used in the reverse LM.

6.1.3. N-best List Posterior Probabilities

Based on the recognition N-best list, we computed the
log posterior probability of each word given the acoustic
and language models, or given only one of the two. This
generated three features. The �rst one is de�ned below; the
other two are similar.

log P (WjX;LM) = log

P
HYPs j W 2 HYP

P (HYPjX;LM)P
all HYPs

P (HYPjX;LM)
;

where X is the acoustic realization of the word W [10].

6.1.4. Other Features

We also used the number of phones in the word as a
feature, with the intuition that shorter words tend to be
more often incorrect than longer words.

7. EXPERIMENTAL RESULTS

A multi-layer neural network was trained with the back-
propagation algorithm to minimize the MSE of a set of
training sentences (alternatively, we could have trained the
network to maximize the CREP). We chose a two-hidden
layer sigmoidal architecture, with 50 nodes in each hid-
den layer. The database used for these experiments was
the NIST'95 Evaluations subset of the Switchboard Cor-
pus. The training and testing set consisted of about 20,500
and 2,400 words, respectively.

7.1. Global Performance

In Fig.3, we compare the posteriors estimated by the neu-
ral net with the \true" posteriors estimated as a frequency
interpretation of the data set. The �gure shows that the
data points don't depart much from the diagonal, which
indicates that the true posteriors are well-estimated by the
neural network. The �gure also shows that the neural net
made use of most of the available dynamic range (0 to 1).
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Figure 3. Posteriors estimated from the data vs.
posteriors estimated by the neural network.

Table 1 compares the MSE, CREP, and CER computed
from the priors only and from the posteriors outputted
by the neural network. The decrease in MSE from pri-
ors to posteriors indicates that the average estimation of
the word con�dence improved by (

p
MSE from priors �p

MSE from posteriors), which is roughly a 14% relative
improvement on the test data. For the same data set, the
CER decreased by 43%.

Training set (Pc = 51.62%)

MSE CREP CER
from priors 0:2497 �0:6926 48:38%
from posteriors 0:1838 �0:5484 27:50%

Testing set (Pc = 51.11% )

MSE CREP CER
from priors 0:2499 �0:6929 48:89%
from posteriors 0:1852 �0:5516 27:70%

Table 1. MSE, CREP, and CER for priors only and
for the neural net outputs on the NIST'95 Evalua-
tion subset of Switchboard.

7.2. Feature Performance

The performance of the neural network depends (1) on how
well the individual features can classify words as correct or
incorrect, (2) on how uncorrelated the features are.
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Figure 4. Pdfs of the CI-HMM-normalized, phone-
averaged, LLs (�rst �gure) and of the N-best pos-
terior log-probabilities with acoustic and language
models (second �gure), for correct (solid) and in-
correct (dash) words.



To illustrate the performance of the individual features,
we show in Fig. 4 the probability density functions (pdf)
of the scores associated with correct and incorrect words
by the two best features we implemented: the CI-HMM-
normalized, phone-averaged, log-likelihoods and the N-best
posterior log-probability based on the acoustic and language
models. Although there is a clear separation between the
pdfs of correct and incorrect words, the overlap is large,
meaning that even our best features are not very discrimi-
native.
Table 2 summarizes the performance of the features on

the test set. The �rst column indicates the feature. The
second column speci�es the CER if only the current feature
and the prior, Pc, are used. The last 2 columns give the
MSE and CER of a neural network trained with all the fea-
tures but the current one. Thus, the second column shows
the \quality" of the feature, while the last two columns show
how correlated the feature is with the other features. These
numbers should be compared to the global performance of
the system on the same data set (second portion of Table
1).

Feature NN without
Feature alone this feature

CER (%) MSE CER (%)

CI-norm word-LL 35:33 0:1860 27:75
CI-norm phone-LL 34:73 0:1862 27:87
GMM-norm word-LL 36:55 0:1857 27:89
GMM-norm phone-LL 36:16 0:1857 27:88
GMM-norm state-LL 37:25 0:1860 27:88
trigram LM log-P 46:16 0:1878 28:16
n-gram order in LM 46:92 0:1863 27:97
rev.-trigram LM log-P 47:15 0:1874 28:15
n-gram order rev.LM 46:83 0:1863 27:87
N-best log-P(Ac,LM) 31:38 0:1938 29:55
N-best log-P(Ac) 37:07 0:1866 27:92
N-best log-P(LM) 36:63 0:1862 27:89
num. phones 45:84 0:1883 28:15

Table 2. Feature performance on the test set of the
NIST'95 Evaluation subset of Switchboard.

From Table 1 and 2, we can conclude that:

1. Any feature taken alone gave a probability of classi�-
cation error lower than that obtained with the priors
only.

2. The combined features (neural net output) gave better
performance than any feature alone.

3. The best features according to the CER are the N-best
list posterior log-probability based on the acoustic and
language model, and the CI-HMM normalized acoustic
log-likelihoods computed and averaged at the phone
level.

4. Some features have a high CER if taken alone but con-
tain information that is uncorrelated with the other
features: e.g. the number of phones in the word and
the trigram LM log-probabilities.

7.3. Maximizing the NERP

So far, we discussed the neural net performance in terms of
MSE, CREP, and CER. As the neural network was trained
to maximize the posterior probability that a word is correct
(minimizing the MSE), it does not maximize the NERP. In

order to improve the NERP, we performed a preliminary
experiment where we passed the con�dence measure out-
putted by the neural network through an adjustable non-
linearity (sigmoid), and we optimized the non-linearity to
maximize the NERP. We found that the NERP could be im-
proved from 0.1532 to 0.4550 by making the non-linearity
a hard threshold.

8. SUMMARY

We de�ned the con�dence in a word hypothesis as the pos-
terior probability that the word is correct. We proposed
three criteria to measure the performance of a word con�-
dence algorithm: the mean square error, the cross-entropy,
and the classi�cation error-rate. We estimated word con�-
dences with a neural network that combines various knowl-
edge sources relative to the words and to the hypotheses.
We showed that the combination of several features signif-
icantly improved our con�dence estimates. We also pro-
posed a joint criterion that combines the performance of
the recognition and con�dence algorithms.
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