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ABSTRACT

This paper proposes a new type of acoustic model called the
discrete mixture HMM (DMHMM). As large scale speech
databases have been constructed for speaker-independent
HMMs, continuous mixture HMMs (CMHMMs) are needed to
increase the number of mixture components in order to
represent complex distributions. This leads to a high
computational cost for calculating output probabilities. The
DMHMM represents the feature parameter space by using the
mixtures of multivariate distributions in the same way as the
diagonal covariance CMHMM. Instead of using Gaussian
mixtures to represent feature distributions in each dimension,
the DMHMM uses the mixtures of the discrete distributions
based on the scalar quantization (SQ). Since the discrete
distribution has a higher degree-of-freedom in terms of
representation, the DMHMM is advantageous in representing
the feature distributions efficiently with fewer mixture
components. In isolated word recognition experiments for
telephone speech, we have found that the DMHMM
outperformed the CMHMMs when those models had the same
number of mixture components.

1. INTRODUCTION

Overviewing the past progress in acoustic modeling, the
discrete Hidden Markov Model (DHMM) based on vector
quantization (VQ) was often used in the early years. The
discrete distribution is non-parametric and can represent an
arbitrary distribution shape. However, the VQHMM suffers
from VQ distortions. In order to decrease the distortion,
multiple codebooks were introduced to the VQHMM (See
Figure 1).

There is an another stream of acoustic modeling
techniques based on the continuous distribution. The
continuous HMM (CHMM) represents feature distributions
parametrically using Gaussian pdfs. When the amount of
training data is small, using the parametric distribution is
effective in estimating suitable distributions because the
constraint on the distribution shape interpolates the unseen
data. Currently, the continuous mixture HMM (CMHMM) is
widely used for speaker-independent context-dependent
phoneme models. The Gaussian mixture with the diagonal
covariance matrices is preferred than the full covariance
version from the reason of the parameter estimation.

The conditions surrounding the acoustic modeling have
been changing, recently. Since large speech databases
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Figure 1. Historical view of acoustic modeling.

collecting from various speakers and recording conditions
were built, the number of mixture components in an HMM
state have been increased to represent complex feature
distributions more accurately. Some speech recognition
systems use models having more than 30 mixture
components, and succeed in achieving higher level of
recognition performance [1][2]. In general, model complexity
trades off against model robustness for recognition. In recent
situations, models need higher complexity to represent the
distributions in detail since it is possible to use a large
amount of data for model training.

Applying Gaussian pdfs is a good idea for representing
relatively simple distributions. However, is a Gaussian
mixture the best way of representing complex distributions?
Many distributions are required to represent a complex
probability distribution in a multidimensional feature space
since the Gaussian pdf has a lower degree-of-freedom in terms
of representation. For the sake of improving the recognition
performance, high computational cost is required, which
basically increase monotonously in proportion to the number
of mixture components. Simply increasing the number of
mixture components of the CMHMM is not a good solution
for efficient acoustic modeling. To solve this problem, this
paper proposes the DMHMM which incorporates the
advantages of both the DHMM and the CMHMM.



2. EFFICIENT MODELING USING
DISCRETE MIXTURE HMM

2.1. Discrete mixture HMM

We propose the discrete mixture HMM (DMHMM) which uses
discrete distributions as the mixture components in each
feature dimension. Although the structure of this model is
similar to the conventional multivariate CMHMM with
diagonal covariance matrices, its Gaussian distributions in
each dimension are replaced by discrete distributions. Each
distribution is represented by the probabilities for the scalar
guantization (SQ) codes. Since the discrete distribution can
represent an arbitrary distribution shape (nonparametric), the
DMHMM is considered to be more advantageous in accurately
representing a complex distribution than the CMHMM.

Figure 2 illustrates an example of the two-dimensional
feature space represented by the mixture Gaussian pdfs with
diagonal covariance matrices. In this example, six one-
dimensional Gaussian distributions in each dimension (twelve
Gaussian distributions in total) represent the feature parameter
space. By using the DMHMM, the feature parameter space can
be covered by three one-dimensional discrete distributions
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Figure 2. Feature parameter space represented by
continuous mixture HMM (CMHMM).
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Feature parameter space represented by
discrete mixture HMM (DMHMM).

Figure 3.

(six discrete distributions in total) as shown in Figure 3. This
example indicates that the same level of recognition
performance will be obtained by the DMHMM with fewer
mixture components than the CMHMM. In other words, when
the DMHMM and the CMHMM having the same number of
mixture components are trained using a large amount of data,
the DMHMM will outperform the CMHMM.

In a continuous distribution framework, the diagonal
covariance CMHMM is preferred over the full covariance
CMHMM. There is a large number of parameters to be
estimated in the full covariance version, and this makes
reestimation difficult. The same story can be said for the
discrete distribution case. The mixture of multivariate
distribution composed by the SQ based one-dimensional
discrete distribution is expected to be more efficient than the
VQ based discrete distribution.

The output probability, bg(x), of state s for p-
dimensional input observation vector at time t,
x = (¢ x2,L xP)", is calculated as

by(x) = Z s (%) @
kR,
p .
s (X) = Wg i |_| Wi (%) @
1=1

where K denotes the subset of distributions comprising the
mixture components for state s, and Wq i denotes the mixture
weight coefficient for the k-th mixture component in state s.
% isthe SQcodefor X;. g ;(X) is the output probability
distribution for the k-th mixture component in i-th dimension
of state s.

2.2. Computational aspects

In the DMHMM, the output probabilities of the discrete
distribution are stored in a table beforehand and the
probability is referred to according to the SQ code. The
probability is often calculated in the logarithmic domain. In
the log likelihood calculation for each distribution, the
Gaussian distribution requires the arithmetic operations
(x —uki)2/20§i , where p,; and olfi are the mean and variance
values. On the other hand, the discrete distribution requires
SQ, which can be rapidly executed by float-to-integer
conversion, and table look-up according to the SQ codes.
This is the significant advantage of SQ, and is different from
the VQ which requires a number of distance calculations. When
the SQ code books for each feature dimension are shared by all
discrete distributions in all models, the SQ is needed once at
each frame. Thus theoretically, the DMHMM s faster than the
CMHMM. In practical terms, the computation time depends
on the employed computer architecture because the time
needed for the table look-up varies.

In the previous work [3], it was found that substituting
the SQ discrete distribution for the Gaussian pdf of the
CMHMM did not degrade the recognition performance until
reaching 16 SQ levels (SQHMM). This is also supported by
the experiment in which the 10-th order LSP parameters with
4-bit quantization could represent LPC speech spectra at an
average spectral distortion of 0.77 dB [4]. Also in [3], the



technique for fast output probability computation in the SQ
based frame work was presented. The technique neglects the
computation of Eq. (1) including a low SQ probability, which
may not contribute to the state output probability. The
technique attained an approximate 30% reduction in
computational cost for the output probability. All these
properties and techniques can be inherited in the DMHMM.

2.3. ML reestimation procedure for discrete
mixture distributions

Maximum likelihood (ML) reestimation procedure for the
output probability distributions of the DMHMM are described
in this section. We first define & (r,s k), the probability of
being in state r at time t, and mixture component k in state s at
time t+1, given model A and discrete observation sequence
X=(%g,Xo,L X, L %)
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where a,(r) and f;.1(s) are the forward and backward
probabilities, respectively. @ (X+1) is the discrete output
probability for the k-th mixture component in state s, and is
calculated as described in Eq. (2). Thus, the probability of
being in the k-th mixture component in state sat timetis

N
Vi(sk) =% &(r.sk) (4)
r=1

where N isthe number of states connected to state s. Finally,
the reestimation formula for the output probability
distribution (one-dimensional distribution in dimension i of
the k-th mixture component in state sis
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where X; is the SQ code of the observation in dimension i at
timet, and v:n is the SQ code for the m-th quantization point.
The reestimation formulae for the state transition probability
and the mixture coefficient are identical to those for the

CMHMM.

2.4. Initial model estimation

There are a number of techniques for obtaining the initial
models of the DMHMM training. In the following
experiments, the initial models were generated based on the
CMHMM:

(1) Training a CMHMM having the same number of mixture
components with the desired DMHMM.

(2) To generate the SQ code books for each dimension, the
range of quantization in dimension i are set as shown
below.

where uy;and o, are the mean and variance values of the k-
th one-dimensional Gaussian distribution in dimension i.
K indicates the total number of distributions in all models.
The range is equally divided by the quantization levels to
determine the SQ centroids.

(3) Exchanging the continuous distribution in each dimension
to the discrete distribution. Probability densities for the SQ
centroids are calculated within +50. The sum of
probability densities is normalized by 1.0 for each
distribution.

The state transition probabilities and the mixture coefficients

are identical to those of the continuous distribution HMM

generated in step (1).

3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

The DMHMMs were compared with the CMHMMs in speaker-
independent isolated-word telephone speech recognition
experiments. The performances were evaluated in both the
context-independent modeling (26 models) and the context-
dependent modeling (1,504 models). Model-level and state-
level tying were carried out for the context-dependent HMMs
[5], resulting in 400 shared states. The gender-dependent
models were trained using 16,103 phoneme-balanced words
uttered by male speakers, and 15,346 words uttered by female
speakers. Data were collected through real telephone
networks. 100-word sets each uttered by 9 male and 8 female
speakers were used for evaluation. The vocabulary size for the
recognition test was 1,200 words. The utterances were
sampled at 8 kHz, and 12 mel-scaled frequency cepstrum
coefficients (MFCCs) were calculated every 8 ms. The feature
vector consists of 12 MFCCs, 12 first order time derivatives
of the MFCCs and one dimensional delta-power (25
dimensions in total).

3.2. Results

The training procedure for the DMHMM was as follows. First,
the context-independent CMHMMs were trained using data
subsets with hand labels. Then, the models were trained using
al the data. After two training iterations, the initial models
for the DMHMMs were generated based on the CMHMMs as
described in Sec. 2.4. The reestimation procedure iterated
three times for both the CMHMM and the DMHMM after
generation. Figure 4 shows the training curve along with the
training iteration.

Table 1 shows the average word recognition performance
using gender-dependent context-independent HMMs. The
baseline system used the four-mixture CMHMM. The error
reduction rate was calculated based on the baseline
performance. For both the male and the female models, the
CMHMM with sixteen mixture components attained an
approximate 20% reduction in error. The DMHMM with four
discrete mixture components were evaluated with two different
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Figure 4. Recognition rates along with training iterations.

SQ levels. All feature dimensions were linearly scalar
quantized into 20 SQ points and 40 SQ points within the range
of +50. Although the performance varies depending on the
SQ levels, the DMHMM outperformed the CMHMM when
those have the same number of mixture components. The
performance did not reach to the sixteen mixture component
CMHMM.

The computation time needed for calculating output
probabilities was also measured for all models. Although a
large amount of arithmetic operations were replaced by table
look up, the CPU time needed for the DMHMM was increased
by approximately 30% compared with the CMHMM (using
HP735). This is mainly caused by the time needed for table
look up which requires memory access, and the memory access
time highly depends on the memory cache size.

When the models are compared at the same performance
level, the DMHMM still has the advantage. To obtain the
same performance as the DMHMM with four mixtures, namely
the 10% error reduction, the CMHMM will require about eight
mixture components if the performance increases
proportionally to the number of mixtures. The double number
of mixture components results in a 100% increase in the CPU
time. Furthermore, the sixteen-mixture CMHMM required the
computational cost as much as four times of the baseline
system while its performance was the best.

Table 2 lists the performance using gender-dependent
context-dependent HMMs. For male models, the DMHMM
achieved higher recognition performance than the CMHMM
also in the context-dependent model structure. Currently, the
DMHMM failed to improve the performance of the female
models.

4. CONCLUSION

This paper proposed the DMHMM to represent the feature
parameter space efficiently and improve the recognition
performance. Instead of using the Gaussian mixtures, the new
model uses the mixtures of the discrete distributions to
represent the feature distributions. Each mixture component
composes the multivariate distribution similar to the
CMHMM. The model has the advantage for a model with
complex distributions using a large amount of training data.
The experimental results show that the DMHMM obtained
a better recognition performance than the CMHMM when the
number of mixture components were the same. From the view

Table 1. Comparison in performance for the gender-
dependent context-independent models.

Gender Mae Female
R . | Error R .| Error
Model R;C;)?o/] Reduction R:gﬁ)/] Reduction
N Rate [9] % | Rate [%]
4 mix.

CM- (baseline) 87.1 N/A 77.8 N/A
HMM

16 mix. 899 | 217 | 825 | 212

203Q
- s | 874 | 23 | 8L8 | 180

HMM 4 mix.

40 SQ
lovas | 888 | 132 | 790 | 54

Table 2. Comparison in performance for the gender-
dependent context-dependent models.

Gender Male Femae
R Error R Error
Model €C00. | Reduction | ~€99" | Reduction

Rate [%] |Rate[o] | Rate[%)] | Rate [%]

om. | ey | 920 | NIA | 868 | NIA
HMM

16 mix. 946 | 239 | 898 | 22.7

DM- 20 SQ

HMM 4 mix. levels 93.9 141 | 87.2 3.0

point of the computational cost, the DMHMM succeeded in
obtaining the same performance with a low computational
cost.
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