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ABSTRACT

Dynamic modeling of speech is potentially a major im-
provement on Hidden Markov Models (HMMs). In one ap-
proach, trajectory models[1] are used to model the dynam-
ics of the spectrum, and are used as basis for classi�cation
[1, 2]. Although some improvement has been achieved in
this way, one would hope for more substantial improvements
given that the independence assumption is removed. One
reason why this was not achieved may be that the trajec-
tory models are based on cepstral coe�cients; we show that
these tracks contain spurious oscillations. This suggests
that these trajectory features might have a high within-class
variance. We introduce a measure of evaluating the smooth-
ness of trajectory-based features. This measure provides a
method of selecting the best of a set of similar features. For-
mant trajectories prove to be signi�cantly smoother than
trajectories of mel scale cepstral coe�cients (MFCC) by
this measure, but this does not translate directly to im-
proved performance.

1. INTRODUCTION

It is well known that speech has high variability. How-
ever, consistency exists both within a phonetic unit and
across an utterance. In general, in a given phonetic con-
text, each phone has a certain con�guration of articulators
associated with it. Although there are variances between
di�erent speakers, they share the same movement of the ar-
ticulators when producing the same phone sequence. The
similarity in dynamic movements of the articulators corre-
sponds to the similarity of dynamics in the acoustics of each
phone. Therefore, features that can capture these dynamic
movements in the acoustic signal should be very useful in
speech recognition.
Several trajectory models[1, 3, 4, 5] have been proposed

to capture the dynamic behavior of speech. In Goldenthal's
work[1], for instance, the temporal behavior is modeled by
templates of the dynamics of the acoustic attributes used to
represent the signal. By estimating their spatial-temporal
correlation structure, trajectory models are generated for
phonetic recognition. Most of Goldenthal's results are ob-
tained using trajectories of mel scale cepstral coe�cients
(MFCCs).
In our past e�orts to incorporate this dynamic informa-

tion in speech recognition[6], we built a recognition system

using syllable-like units and used the statistical trajectory
models (as described in [1]) as the main features. Although
we obtained encouraging results, we found that trajecto-
ries of the coe�cients in a cepstral-based analysis oscillate
through time even when the signal is changing slowly and
smoothly. This is caused by the trigonometric mapping be-
tween cepstral coe�cients and frequency components (Sec-
tion 3). This seems to indicate that it may be advantageous
to use a description more directly related to the mechanisms
of speech production in a trajectory-based model { e.g. a
description based on formants.
However, it is not entirely straightforward to compare the

trajectories produced by two such dissimilar feature sets.
We have therefore designed a statistical measure to compare
various trajectory-based feature representations.
In the following sections we describe the de�nition and

the underlying meaning of the measurement (Section 2), the
simulation of the MFCC oscillations (Section 3), and the
measurement results we obtained on TIMIT vowels (Sec-
tion 4). Finally, in Section 5, we summerize our work and
propose related future work.

2. SMOOTHNESS MEASUREMENT

In order to compare the relative smoothness of various tra-
jectories, we de�ne a measure called relative percentage er-
ror (RPE):

RPE =

P
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where T denotes the n state trajectory for the speci�c fea-
ture component. (That is, the trajectory is represented by n
sample values, and the summation runs over these samples.)
P denotes a low-order polynomial �t to this trajectory, and
� denotes the mean value of the trajectory. The numerator

nX
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reects how well the low-order polynomial �ts the measured
track, and the denominator normalizes this �tting error by
the overall signal variance.
This measure therefore tells us how well the low-order

polynomial �t models the measured trajectories; we have
experimented with second-order and third-order �ts with
almost identical results in both cases.



3. SIMULATION EXPERIMENTS

In this section we describe a simulation experiment which
explains the observed oscillations in the MFCC trajectories
graphically. The aim of this experiment is to observe the
behavior of the MFCC trajectories when the formants move
across multiple frequency bands.
A signal with two rising tones is generated by adding two

sinusoidal signals. Trajectories of the MFCC coe�cients
are calculated for this signal. The spectrogram and the
trajectories are presented in Figure 1. In Figure 1, the
�rst window shows the spectrogram of the signal and the
following six windows show the trajectories of the 0th, 1st,
2nd, 3rd, 4th, 5th and 6th MFCCs, respectively.

Figure 1. Spectrogram and the MFCC trajectories

of signal with two rising tones.

We see that a signal as simple as a pair of rising tones can
cause signi�cant oscillation of the MFCC trajectories - espe-
cially the higher-order coe�cients vary through a substan-
tial fraction of their total range despite restricted changes
to the signal. This fact is con�rmed by analysis of the def-
inition of MFCCs, and suggests that smoother trajectories
may be obtained with a more \natural" feature set.
To further illustrate this observation, Figure 2 shows a

real example from the TIMIT database. In Figure 2, the

�rst window shows the spectrogram of the signal and the
following six windows show the trajectories of MFCCs 0
through 6. Comparable variations are observed.

Figure 2. Spectrogram and the MFCC trajectories

of signal for a TIMIT example (phoneme \ay").

4. SMOOTHNESS ANALYSIS AND

EXPERIMENTS

This hypothesis has been tested with a set of experiments
designed to compare the smoothness of formant trajectories
and MFCC trajectories. Classi�cation results using these
trajectory features are also presented. In these experiments,
the task is context-independent, gender-independent vowel
classi�cation. The TIMIT database is used as the corpus.
The 16 vowels used in the experiments are:
aa ae ah ao aw ay eh er ey ih iy ow oy uh uw ux

The training set includes all the sx and si �les in the
TIMIT training set, and the test set includes all the sx �les
in the TIMIT test set. Details are shown in Table 1:



Data Set #Utterances # vowels
train 3696 sx si 31863
test 840 sx 6771

Table 1. The data set used in the experiments.

In the experiments performed, three formants are esti-
mated for each vowel by using a formant estimation method
proposed by Welling and Ney[7]. The results of the for-
mants smoothed by a median �lter of window width 5 are
also presented. These are compared to 14th-order MFCCs.

4.1. Smoothness comparison

Tracks with 10 states for each dimension (MFCC or for-
mant) are computed for each segment. RPE values are cal-
culated for each track. Statistical tests (T test )[8] are then
performed to verify the assumption that the RPE value
of the formant trajectories are smaller than that of the
MFCCs. The t value is calculated as:

t =
�X � �0

S=
p
n

where �X denotes the mean of all the formant trajectories'
RPE value, �0 denotes the mean of all the MFCC's RPE
value, and S denotes the sample standard deviation of all
the formant trajectories' RPE values; n is the number of
samples. If we evaluate signi�cance at the 0.5% level, us-
ing a one-tailed test, we need jtj > 2:576 for a signi�cant
di�erence.
The statistical smoothness comparison result is shown in

Table 2. The numbers in the table are the t values for
di�erent phonemes.

phoneme formant smoothed
formant

aa {11.2068 -34.1291
ae -12.4169 -31.4355
ah -12.311 -32.8983
ao -12.1021 -33.072
aw -4.9549 -12.6598
ay -11.200 -23.6606
eh -19.2256 -49.579
er -10.3508 -26.1233
ey -16.2408 -37.9998
ih -18.0738 -51.9455
iy -18.073 -56.479
ow -13.947 -29.7495
oy -8.06058 -10.8648
uh -4.14614 -14.1025
uw -5.31656 -13.1767
ux -6.0073 -22.3937

Table 2. Statistical smoothness comparison result

using Relative Percentage Error measure.

Clearly, all of the RPE values for the formant features
are signi�cantly smaller than that of the MFCCs. This
suggests that the MFCC feature set introduces signi�cant

variation which is modeled in a simpler fashion by formants.
Consequently, it is reasonable to expect that within-class
variances for the formant trajectory features are smaller
than that of the MFCCs.

4.2. Classi�cation using trajectory features

Neural networks were trained to be classi�ers using the tra-
jectory features for both MFCCs and formants. We chose
to use 10 states for each trajectory in this experiment. The
trajectory of the energy and the log duration of the segment
are also used as part of the feature set. The classi�cation
results are shown in Table 3; improved performance is not
obtained with the formants, despite their smoothness.

feature MFCC formant smoothed formant
dimension 151 41 41
% correct 66.6% 64.6% 64.5%

Table 3. Classi�cation results using di�erent tra-

jectory features.

4.3. Classi�cation using polynomial approxima-

tions

The smoothness analysis has shown that the formants are a
smoother representation. This suggests that coe�cients of
a polynomial approximation of the formant trajectory are
suited to be used as features for classi�cation.
Figure 3 shows the polynomial �tting of a typical for-

mant trajectory. In the �gure, the �rst window shows the
spectrogram and the original formant position estimation.
The second window is the phonetic label. l-ay+ih means
phoneme ay in the left context of l and right context of
ih. The third window shows the formant trajectory recon-
structed from the 3rd-order polynomial �tting.
In this experiment, the coe�cients of an orthonormal

polynomial approximation (the Legendre polynomial[9]) for
the trajectories are used as features in classi�cation.
The classi�cation results are shown in Table 4.

feature MFCC formant smoothed formant
dimension 61 17 17
% correct 69.7% 66.7% 66.8%

Table 4. Classi�cation results using polynomial ap-

proximation for di�erent trajectories.

The results shows signi�cant improvement over the tra-
jectory features, for all cases. The signi�cant improvement
on MFCC features might be attributed to the dimension re-
duction in feature space which helps in the neural network
training process.
Despite the smaller variance of the formant features, we

did not obtain better performance on this classi�cation task.
This may be related to the additional information contained
in the cepstral features (of which there are almost four times
as many as the formant features). Note that our results are
comparable to what Goldenthal reported in [1].



4.4. Classi�cation using more information

To investigate whether additional information can be used
to improved the performance of the formant-based mod-
els, features describing other attributes of the formants are
added into the feature set to be investigated. The aver-
age bandwidth of the formants and contextual information
are tested in these experiments. The contextual features
are calculated as the average formant location of the three
frames to the left of the left boundary and three frames to
the right of the right boundary of the segment.

The classi�cation results are shown in Table 5.

feature +bandwidth +context
dimension 20 28
% correct 67.2% 68.0%

Table 5. Classi�cation results using feature repre-

sent other information.

These results show that adding relevant information can
help improve classi�cation performance. We found no im-
provement for classi�cation performance for MFCC fea-
tures after adding the contextual features. Thus, it seems
as though the additional spectral information contained in
MFCCs can indeed account for at least some of the perfor-
mance di�erences observed.

Figure 3. Polynomial �tting of the formant trajec-

tory

5. SUMMARY AND FUTURE WORK

We presented a new measure for comparing the smoothness
of di�erent trajectory features. Preliminary experiments
show that trajectories of formants are smoother than those
of MFCC coe�cients.
These results do not translate directly into improved

performance at vowel classi�cation. Adding additional in-
formation helps to improve the classi�cation performance.
Further research is needed to see whether other informa-
tion can be used to obtain even further improvement. We
also need to investigate whether the imperfections of the
formant-tracking algorithm are responsible for a substan-
tial degradation in performance.
To complete the study of the trajectory features, we will

further investigate the e�ects of moving formants on the
cepstral-based analysis technique and study possible inte-
gration of related features (such as trajectories of the for-
mant bandwidth and other features describing the trajec-
tory shape) to formant trajectory features.
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