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ABSTRACT

In this paper we propose a new approach to the modeling of
speech based on cues from the peripheral auditory system.
Our approach attempts to incorporate the dynamic adapta-
tion of biological auditory systems to varying sound by sim-
plistically formulating a dual-processing strategy that treats
unvoiced and voiced speech as deserving of different pro-
cessing. Preliminary studies show that this approach pos-
sesses significant noise robustness.

1. INTRODUCTION

Humans are able to accurately recognize speech over a wide
variety of acoustic environments while automatic speech
recognition (ASR) systems show degradation in performance
even under mild variations in the acoustic environments
used in training and testing the systems (e.g., Acero, 1993[1]).

While traditional signal processing approaches have been
vigorously pursued, the success of techniques that use crude
perceptual cues, such as in mel-frequency warping (e.g.,
Davis and Mermelstein, 1980[2]), perceptual linear predic-
tion (PLP)[3], RASTA processing of speech[4] and sub-band
correlation (SBCOR) analysis [5, 6], provide clear evidence
that cues from studies of the peripheral auditory system
can be successfully and meaningfully integrated into ASR
front-ends, thus providing better and more robust repre-
sentations of speech. Attempts at using finer auditory cues
with computational models of the auditory periphery as ASR
front-ends have also shown promise (e.g., Cohen, 1989[7],
Jankowski et al., 1995[8], Sandhu and Ghitza, 1995[9]). The
success of these paradigms provides powerful motivation
for exploring the integration of auditory cues into traditional
signal processing approaches of speech representation.

The noise suppression abilities of the peripheral auditory
system (PAS) has been demonstrated by many groups, both
in physiological experiments (e.g., [10]) and in the responses
of models of the PAS (e.g., [11]). This noise “robustness”
is commonly attributed to the filtering action of the basilar
membrane (BM). Linear time-invariant filtering approaches
have allowed several groups [12, 13, 14] to obtain encourag-
ing results for speech processing. Some researchers [15, 16]
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have incorporated BM nonlinearities into their models to ac-
curately model data from physiological experiments. How-
ever, the lack of any compelling evidence that such an in-
clusion would help in applications, such as speech process-
ing, provides little motivation for their integration into such
models.

Recent work[17] in our group on the analysis of the ef-
fect of basilar membrane nonlinearities, in particular, the ob-
served broadening of BM filtering with increasing stimuli
level, indicates that BM nonlinearities act in a manner that
strengthens vowel perception in noise but degrades conso-
nant perception. This conflict suggests that improved robust-
ness can be achieved by the use of dual filter-banks, broad
bandwidth filters for robust representation of vocalic sounds
and narrow bandwidth filters for robust representation of
consonant-like sounds, in applications such as speech recog-
nition. Our use of these dual filterbanks is the basis of dual-
channel auditory modeling.

In this paper we formulate the dual-channel auditory spec-
trum (DCAS) model, propose a dual-channel auditory spec-
trum based cepstral coefficient (DCASCC) technique as well
as provide the preliminary results obtained from various ex-
periments conducted on our Entropic’s HTK based ASR sys-
tem.

2. THE DUAL-CHANNEL AUDITORY MODEL
(DCAM)

The early auditory system constitutes the system that per-
forms the initial transformation of auditory information
(sound) from pressure differentials in air to the initial neural
representations in the auditory nerve. These initial neural
representations are then further processed in higher regions
of the auditory nervous system.

Typically models of the early auditory system are com-
posed of three cascaded stages: analysis, transduction, and
reduction as shown in Figure 1.
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Figure 1. Macroscopic view of a model of the early audi-
tory system.

The analysis stage corresponds to transformation of sound
into basilar membrane displacement. The varying stiffness
of the BM results in in a filtering action that decomposes the



sound into spectral bands akin to filterbank decomposition
but differing in the non-linear intensity-dependent nature of
BM filtering.

The transduction stage corresponds to the transduction of
the cilia displacement into neural firings. The cilia displace-
ment is initially transformed into variations of electrical po-
tential which, in turn, modulate the release of neurotrans-
mitter causing firings in the auditory nerves that populate
the inner hair cells.

Finally these neural firings are passed on to the higher lev-
els of the auditory nervous system, where the relevant infor-
mation is extracted and processed. This forms the reduction
stage of the model.

The auditory model from which the Dual-Channel Audi-
tory Model is derived, originally proposed by Shamma et
al. [18, 19], is shown in Figure 2. Briefly, it consists of a set of
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Figure 2. A model of the early auditory system.

filterbanks performing the initial frequency analysis, a time
derivative and nonlinearity (we use a step function) corre-
sponding to the transduction of inner hair cell cilia displace-
ment, and finally a lateral inhibition network (LIN) reduction
stage to model the information enhancement and extraction
process. LINs are found in many biological systems and can
be modeled (in their simplest form) as a single layer feedfor-
ward or recurrent neural network with mutually inhibitory
weighting. In this model we use a two stage process: an
initial spatial derivative stage that models the lateral cou-
pling/inhibition amongst the LIN neurons and a half wave
rectifier that models the neurons nonlinearity. This is fol-
lowed by a temporal integration that mimics the inability of
the auditory nervous system to follow rapid temporal varia-
tions.

Mathematically, if we denote the sound signal as x(t), then
the output of the analysis stage is given as:

y1(t; s) = x(t) �t h(t; s) (1)

where �t represents convolution in time and h(t; s) is the re-
sponse of the cochlear filter at location s on the basilar mem-
brane at any chosen sound level.

The output of the transduction stage can written as:

y2(t; s) = g(@ty1(t; s)) (2)

where g(�) represents the memoryless compressive step non-
linearity and @t� the time derivative of the output of the anal-
ysis stage.

Finally, the LIN operation can be written as:

y3(t; s) = @sy2(t; s) (3)
= g

0

(@ty1(t; s))@s@ty1(t; s) (4)

y4(t; s) = max(y3(t; s); 0) (5)
y5(t; s) = y4(t; s) �t �(t) (6)

where the final temporal integration stage has been denoted
as a time convolution with a low-pass filter �(t).

The output of this stage y5(t; s), allowing for all our ap-
proximations and possible modeling errors, represents the
sound as it would be portrayed to the higher regions of the
auditory nervous system (ANS). This output is referred to as
the auditory spectrum.

Our earlier work[17] analyzed the model of Figure 2 ac-
counting for dynamic variations in the filtering of the filter-
bank first stage of the model. The results of this analysis sug-
gested that vowel perception in noise improves as the BM fil-
tering shows progressively broader tuning with increasing
sound levels whereas consonant perception degrades with
increasing sound levels.

This conflict indicates that improved robustness can be
achieved by the use of dual filter-banks, broad bandwidth fil-
ters for robust representation of vocalic sounds and narrow
bandwidth filters for robust representation of consonant-like
sounds, in applications such as speech recognition.

Following this, the DCAM uses “broad” filters for voiced
speech and “narrow” filters for unvoiced speech. The au-
ditory model of Figure 2 is modified to allow for selection
of the appropriate filter bank (narrow or broad) for the ap-
propriate speech category. The resulting composite model is
shown in Figure 3 as an expansion of the macroscopic model
of Figure 1. Thus the resulting model is identical to the one
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Figure 3. Composite model incorporating dual-channel
processing.

shown in Figure 2 with the single filter bank being replaced
by a new dual-channel filtering block as shown in Figure 4
and Figure 3.

We have developed a simple but effective hybrid chan-
nel selection algorithm that combines the Markel’s SIFT un-
voiced/voiced algorithm[20] with a threshold based detec-
tion algorithm on the auditory spectrum obtained from the
broader filter bank, to provide a robust selection algorithm.
The threshold based detection algorithm resulted from our
empirical observation that, for progressively lower SNRs, the
auditory spectrum output from the broader filter bank dis-
played increasing “flatness” for unvoiced input. This led us
to devise a simple threshold algorithm based on the ratio of
variance to mean of the auditory spectrum obtained from
the broader filter bank. Figure 4 gives the flowchart for this
algorithm.
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Figure 4. Flowchart for the hybrid voiced/unvoiced detec-
tor.

3. DCAS CEPSTRAL COEFFICIENTS

Previously we defined the output of the auditory model to
be the “auditory spectrum” as it crudely represented the fre-
quency “spectrum” seen by the ANS. Our features should,
for this particular model, be related to and retain the infor-
mation in the auditory spectrum. We choose an approach
similar to that used for mel-frequency cepstral features, the
essential difference being that our spectrum is not obtained
as a Fourier transform of the input speech but as the output
of an auditory model. The approach can be summarized as
follows:

1. Obtain the auditory spectrum from the model.

2. Interpolate to obtain the appropriate frequency resolu-
tion.

3. Calculate the cepstral coefficients following Davis and
Mermelstein (1980)[2].

4. Perform any needed post-processing such as cepstral
weighting/liftering[21].

Our approach though unique follows similar work by
Ghitza on his EIH model based ASR front end [13, 15] which
used a LPC spectrum fitted to the EIH “spectrum” from
which appropriate cepstral coefficients were determined.
Another approach advocated by Seneff[12, 22] is the use
of frequency content i.e., synchrony information as well as
mean-rate information. These synchrony/mean-rate fea-
tures were well suited to her model but would have been
difficult to incorporate into our composite model. Again it
should be emphasized that the choice of features is highly
dependent on the auditory model and what it provides as its
output. Our particular choice of features is at this point satis-
factory to demonstrate the concept, we feel that further work
is necessary to determine whether “better” features exist and
how best to incorporate them.

4. EXPERIMENTS

Experiments were conducted on an HTK based phoneme
recognizer. The vocabulary consisted of a reduced set of 48
phonemes taken from the TIMIT phoneme set. The data con-
sisted of 1000 utterances arbitrarily chosen from the TIMIT

corpus, 750 were used in the HMM training with 250 utter-
ances used as an independent test set. No attempt was made
to catalog the speaker characteristics.

For the experiments on noisy speech, utterances were in-
dividually processed by appropriate addition of pink Gaus-
sian noise. The noise was created by initial generation of
Gaussian white noise and subsequent passage of it through
a second order low-pass filter with a nominal cutoff at 7200
Hz. The noise is suitably scaled before addition based on the
desired SNR. The feature extraction process is identical to
the clean speech case apart from this one additional “noise
addition” preprocessing stage.

The experiment was carried out as follows:

1. Extract features from the 750 clean utterances.

2. Train the HMMs using these features.

3. Test the trained HMMs on the unseen 250 clean test ut-
terances set.

4. Test the trained HMMs on the unseen 250 test utter-
ances set after addition of noise.

For our experiments we used three different feature ex-
traction schemes. Firstly, we used MFCC features with
appended log-normalized energy as our baseline conven-
tional ASR system. Our auditory model then furnished the
DCASCC features also with appended log-normalized en-
ergy for our new ASR system. In an attempt to describe
possible improvements over more mainstream single chan-
nel auditory models we disabled the selection algorithm and
extracted features only from the broader filter bank channel,
we will refer to such features as single channel auditory spec-
trum cepstral coefficients (SCASCCs). Log-normalized en-
ergy was also added to the SCASCCs. For the tests on noisy
speech (the last stage) we choose SNR levels at 20dB, 10dB,
0dB and -5dB.

5. RESULTS

Table 1 shows the results for the experiments described
above. As is clear, the robustness of the DCASCC features

Clean 20dB 10dB 0dB -5dB
MFCC 42.38% 19.11% 11.24% 6.05% 2.59%
SCASCC 28.33% 15.15% 9.96% 5.36% 3.51%
DCASCC 25.84% 14.38% 12.39% 8.34% 6.86%

Table 1. Preliminary results on our phoneme recognizer as
%Correct

is remarkable. At -5dB SNR, the DCASCC front end outper-
forms the MFCC front-end by more than a factor of two and
the SCASCC front-end by just under a factor of two. Much
can be criticized about these results. Namely, that a more op-
timized system using more training data and the commonly
used second order features might be a better baseline. In ad-
dition, 6.86% correct for DCASCC features at -5dB SNR is not
acceptable for an ASR system. Moreover on clean speech the
performance of auditory features is at best mediocre. While
this criticism is valid, the fact remains that the concept of
dual-channel auditory spectrum based features is workable
and produces consistently better results than other known



techniques. Current efforts to further improve the perfor-
mance of the proposed DCAM include the selection of more
appropriate features from the auditory model and incorpo-
rating the model in a larger speech recognizer.

6. SUMMARY

In this paper we have brought together the theory introduced
in our earlier work[17] to develop a workable means of in-
corporating dual-channel auditory spectrum based features
into a state-of-art ASR system. We presented preliminary
results which strongly support the validity and usefulness
of the technique vis-à-vis both traditional mel-frequency cep-
strum based features and single channel auditory modeling
for the limited conditions of our experiments.
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