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ABSTRACT

An outline and general design of an integrated-multilingual
speech recognizer is presented, focusing on its key novelty
of cross-language portability. This recognizer extends the
one described in [5] in that the overlapping features de-
signed originally for American English are improved, gen-
eralized, and need only a slight expansion to cover Man-
darin/Cantonese Chinese and Canadian French. It also
enhances the recognizer of [6] in that the object of dy-
namic modeling is moved from the observable acoustic do-
main to the hidden production-a�liated variables de�ned
in the task-dynamic model of speech production [15]. Ma-
jor components of the recognizer and the related training
and recognition algorithms are described.

1. INTRODUCTION

We have in the past several years pursued the development
of a comprehensive framework for speech recognition based
on statistical and computational models of the phonological
and physical processes of speech production [4, 5, 6, 7]. Al-
though these previous e�orts have been exclusively limited
to American English, our framework is ideally suited for
integrated-multilingual speech recognition since the phono-
logical and phonetic uniformities across languages are a nat-
ural consequence of the structure of our recognizer. Cen-
tral to the concept of the integrated-multilingualism is the
recognizer's cross-language portability | it enables the rec-
ognizer to train only on the �rst N languages' speech data
and to perform recognition directly on any new (N + 1)th
(target) language with no requirements to re-design and
to re-train the recognizer.1 The integrated-multilingual
recognition approach is substantially di�erent from the con-
ventional approach to multilingual speech recognition (rf.
[8, 10]), where a large amount of training data speci�c to
the target language had to be collected and be labeled be-
fore building and �ne-tuning the recognizer for the target
language.
At the heart of our integrated-multilingual speech recog-

nition framework is a global and functional model (intro-
duced in [4] �rst) of the top-down human speech commu-

1For satisfactory speech recognition performance, the recog-

nizer for a target language may prove necessary to subject to

an adaptation process. But the initial recognizer built according

to our integrated-multilingual framework will not require speech

data from the target language.

nication process cast �rmly in a statistical framework. The
global model starts from careful speci�cation of a full set
of universal phonological features across languages. This
feature-speci�cation process takes into account the cross-
language commonality in the possible articulatory, acoustic,
and auditory consequences arising from implementation of
the features in speech utterances. These top-level phonolog-
ical features are then passed to control a statistical version
of the classic task-dynamic model of speech production [15].
The statistical model in our recognizer has most of its pa-
rameters trainable from language-independent speech data.
The statistical nature of our task-dynamic model permits
computation of likelihoods for arbitrary sequences of acous-
tic observations, thus enabling speech recognition to per-
form in a conventional top-down fashion without recourse to
direct acoustic-to-articulatory and further inversions which
have proved di�cult due to the well known non-uniqueness
and mismatched degree-of-freedom problems. The purpose
of this paper is to present the general structure of the vari-
ous components of the integrated-multilingual speech recog-
nition framework introduced above.

2. PHONOLOGICAL FEATURES ACROSS

LANGUAGES

The new feature-speci�cation system generalizes and ex-
pands the system published in [5, 6]. In contrast to the
features of [5, 6] which formed hierarchically organized �ve-
tupled bundles after an asynchronous overlapping process
and then were mapped directly to acoustics,2 the current
features are made explicitly to associate with the (statisti-
cal) control parameters governing dynamic properties of the
tract variables de�ned in the model of [15, 12]). The new set
of features exploit relations and similarities of feature com-
ponents across languages, thereby o�ering opportunities to
share observation data among languages and to generalize
the observations from source language(s) to a target one in
training the integrated-multilingual speech recognizer.
Once a full set of features are speci�ed (for potentially

all languages in the world3), we need to represent the
possible feature sequences with their temporal evolution
which are responsible for producing speech utterances cor-

2This mapping was accomplished via stationary-state HMMs

in [5] and via nonstationary-state HMMs in [6].
3At the time of this writting, a complete feature speci�cation

system for American English, Mandarin and Cantonese Chinese,

and for Canadian French has been worked out.



responding to words or word sequences (for any arbitrary
language). We have accomplished this by using a set of
feature-overlapping rules to construct �nite-state automa-
tons whose states are indexed by component features. Im-
proving upon the earlier feature-overlapping rules derived
from phonemic transcription [5, 6], the current recognizer
also exploits syllable structures and intonation patterns in
formulating the rules.
Mandarin Chinese is a syllabic language and syllable is a

most natural unit to use for organizing feature overlapping
for describing speech utterances. Syllables are countably
small, totaling to only 1254 distinct ones (derived from 408
toneless base-syllables). For American English, the syllable
count is large but each syllable has a well de�ned inter-
nal structure consisting of onset and rhyme (nucleus plus
coda) as its constituents [1, 16]. The feature overlaps within
consonant clusters of onset and of coda are rather regular,
so are the overlaps between onset and nucleus, and those
between nucleus and coda. Our current rule set disallows
spreads in Tongue features between onset and coda (i.e.
cross nucleus) within a syllable. For Velum and Lips fea-
tures, the cross-nucleus feature spreads are constrained to
be from coda to onset only and not from onset to coda. Fea-
ture spreads are permitted, with constraints determined by
the prosodic constituent boundaries, between adjacent syl-
lables; i.e. between coda (or nucleus if coda is null) of the
preceding syllable and onset (or nucleus if onset is null) of
the following syllable. Once a syllable is broken down to
its constituents, the size of the constituents becomes count-
ably small and hence they are enumerated exhaustively as
we have done in implementing the recognizer.

3. INTERFACE OF OVERLAPPING

FEATURES TO \TASK" VARIABLES

In our integrated-multilingual recognizer, each feature is as-
sociated with a set of parameters characterizing dynamic
properties of the tract variables. We use a subset of the
13 tract variables in the latest version of the task-dynamic
model [14], where each tract variable, z, is modeled by a
critically damped second order system:

d2z(t)

dt2
+ 2
p
K
dz(t)

dt
+K(z(t)� Z

0) = 0; (1)

which is characterized by the feature-dependent (normal-
ized) sti�ness (KL, KF , or KD, non-random) and by
the feature-dependent statistical distribution on the point-
attractor (Z0 as a random variable) of the dynamical sys-
tem. The form of the distribution is chosen according to
the physical properties of the tract variable. In the current
implementation, closure-constriction-degree attractors (as-
sociated with oral or nasal stop consonants), Z0

L, Z
0
F , and

Z0
D, are zero or positively valued random variables follow-

ing an exponential distribution (characterized by parame-
ters �L, �F , and �D). Critical-stricture-degree attractors
(associated with fricatives) are strict positively valued ran-
dom variables following an inverse Gaussian distribution
[2] (characterized by parameters �F and �F or by �D and
�D) with the mode centered (initialized during training)
at low, critical constriction-degree values appropriate for
generating frications. Open-constriction-degree (vocalics
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Figure 1. Inverse Gaussian distribution for the at-

tractor of vocal tract constriction degree or con-

striction location in arbitrary unit.

mainly) attractors are also strict positively valued inverse-
Gaussian random variables with the mode at the constric-
tion sizes appreciably greater than the critical ones. The
remaining constriction-degree attractors (Z0

V , Z
0
X) and all

the constriction-location attractors (Z0
~L
, Z0

~F
, Z0

~D
) are again

inverse-Gaussian random variables, whose respective distri-
bution parameters � and � are trained with initial values
set at the nominal ones according to speech production data
or principles.
The probability distribution function (pdf) of the inverse

Gaussian distribution is

f(x;�; �) =
p
�=2� � exp[��(x� �)2=2�2x]; x > 0

with � as the mean of the distribution and � as the scale
(skewness) factor. The choice of this distribution for de-
scribing the statistical behavior for the attractors in most
of the tract variables is mainly motivated by its exibility to
represent the possible ranges of vocal-tract constriction de-
grees and locations (which are all positively valued).4 Fig-
ure 1 shows the pdf of the inverse Gaussian distribution for
a �xed parameter � = 1 and with a varying parameter �
from 0.2 to 20 (0.3 as increment). For small values of �, the
pdf's are highly skewed with the mode moving towards zero.
When this distribution is used for oral constriction-degree
attractors, then fricatives will be automatically trained to
associate with small values of � (thereby the mode becomes
close to zero), approximants with the mode away from zero,
and vowels with the mode further away from zero. The at-
tractor of the glottal-aperture (velic-aperture) variable will
also have the mode in the inverse Gaussian pdf far away
from zero for aspiration (nasal) sounds, while that for voiced
(non-nasal) sounds will have the mode close to zero.

4It is also motivated by well established results [2] for this

distribution in parameter estimation, Bayesian inference, signi�-

cance test, and in regression analysis (both linear and nonlinear),

all of which are important in our development of training and

recognition algorithms used for the recognizer.



One signi�cant advantage that arises from interfacing the
phonological features to the task-dynamic model is that a
mechanism similar to that of gesture blending or \parame-
ter tuning" described in [15] can be developed to merge the
tract-variable attractors' distributions associated with over-
lapping features (correlated with \co-produced" articula-
tory gestures) into a single distribution de�ned on the same
tract-variable coordinate system.5 Therefore, the technique
for Cartesian-product construction of �nite-state automata
[5] is no longer needed. The total number of primitive
(inverse-Gaussian) distributions for characterizing the rela-
tionship between the symbolic features and the tract vari-
ables for entire American English is as small as forty6. This
number is increased only up to forty �ve when French is
added, and to only �fty some when Mandarin Chinese is
further added into the language pool.

4. FROM TASK VARIABLES TO ACOUSTICS

VIA MODEL-ARTICULATORS

Given the time varying tract variables produced from the
task-dynamic model, motions of a set of biomechanical
model-articulators,7 x, can be generated via a highly cou-
pled nonlinear kinematic relationship:

X ! Z : z(t) = Z(x(t)): (2)

Combining Eqns.(1) and (2) leads to the following dynamic
system for model-articulators:

J(x)
d2x(t)

dt2
+[

dJ(x)

dt
+2
p
KJ(x)]

dx(t)

dt
+K[Z(x(t))�Z0] = 0;

(3)
where J(x) is the Jacobian transformation matrix for

Eqn.(2), and dJ(x)

dt
is the matrix obtained by di�erentiating

each element of J(x) with respect to time.

Note that the mapping of Eqn.(2) is geometrical in
nature,8 and it also reects speaker and speaking-mode vari-
abilities (including varying dialects, foreign accents, and
speaking rates) in articulation for implementing a given
\task" of vocal-tract constriction. For implementation fea-
sibility, we use radial basis function (RBF) neural nets as a
device for data interpolation in multi-dimensional space to

5In the recognizer implementation, such merge is accom-

plished by a linear combination of the attractor random vari-

ables. Thus the �nal resulting distribution becomes numerical

convolution of the individual distributions associated with each

of the overlapped features.
6The number of primitive distributions is on the order of one

to three thousands in the recognizer described in [5], and on the

order of millions in conventional HMM speech recognizer [10].
7In the latest version of the task-dynamic model [14], the

model-articulators are expanded from the older version [15] and

have included: upper and lower lips, jaw, tongue body, tongue

tip, velum, glottal width, total lung force, supralaryngeal vocal

tract volume, and vocal fold tension.
8To be more precise, the elements in J(x) and

dJ(x)

dt
, which

are determined from Eqn.(2), characterize the geometrical rela-

tionships between motions of the model-articulators and of their

corresponding tract variable.

approximate the mapping in Eqn.(2):

z = Z(x) �
X

i

wie
(x��i)

Tr
Pi(x��i):

The parameters in the above RBF approximation are ini-
tialized during training based on simulations of a geometric
articulatory model with a standard vocal tract. The degree-
of-freedom problem (one-to-many relation between z and x)
can be addressed by incorporating constraints using tech-
niques similar to \transformation gating" [15] during the
RBF network learning phase. Nonsupervised training can
be used for multiple sets of RBF parameters to cluster di-
alect and foreign-accent variabilities.
Given the time varying model-articulator motions pro-

duced from Eqn.(3), the observable acoustic signal O is
generated from a further nonlinear mapping:

X ! O : O = O(x): (4)

This lowest-level mapping is independent of linguistic, di-
alectic, and speaking-mode factors and is only a function of
details of the vocal-tract's acoustic properties such as the
total vocal-tract length, the pharyngeal height, the shape
of nasal cavity, and the average loss in the vocal-tract's wall
vibration, etc.. We use another set of trainable RBFs to ap-
proximate this articulator-to-acoustics mapping. The RBF
parameters are initialized based on simulations of vocal-
tract acoustics using the area functions derived again with
a geometric articulatory model.

5. TRAINING/DECODING ALGORITHMS

With the interface between the phonological features and
the tract variables, and using the feature blending rules
together with the nonlinear one-to-many mapping Eqn.(2)
that couples each tract variable to a number of model-
articulators, Cartesian-product construction is no longer
required in linking the features to acoustics. This has
drastically reduced the overall size of the trainable recog-
nizer parameters. The entire parameter set of our recog-
nizer, potentially capable of language-independent, speaker-
independent, speaking-style-independent, and unlimited-
vocabulary speech recognition, is on the order of two thou-
sands only (about three orders of magnitude lower than that
required by the conventional HMM recognizers which do not
exploit the internal structure of speech). The model pa-
rameters of our recognizer include feature-dependent sti�-
ness (K 0s), feature-dependent attractor distribution pa-
rameters (�0s; �0s; �0s), feature blending weights, feature-
independent (but dialect/accent-dependent) RBF weights,
and, �nally, feature-independent (but vocal-tract-size de-
pendent) RBF weights.
The training of the recognizer is accomplished by

gradient-descent-based numerical optimization techniques.
Gradients of the objective function with respect to the rec-
ognizer parameters are computed in an analytic form and
are then used for optimization. Due to the relatively small
size of the parameter set, this approach is feasible, although
it is still very slow. Alternative techniques, such as genetic
algorithms [12] or EM-based optimal �ltering algorithms



[13], may prove more e�ective in the future despite their
high implementation complexity.
The recognition algorithm is formulated as a straightfor-

ward top-down search problem within the well established
Bayesian framework consistent with the mainstream speech
recognition approach. No bottom-up inversion from acous-
tics to articulation (and further to tract variables, phonolog-
ical features, and to word sequences) is required for recogni-
tion. Such problematic inversion is avoided because the sta-
tistical formulation of our detailed \forward" speech gener-
ation model allows likelihood evaluation for the observable
speech acoustics given an arbitrary word sequence.
We should emphasize here that the cross-language porta-

bility as a key trait of our recognizer originates from the
structure of the recognizer, rather than from the more or
less conventional training and recognition algorithms de-
scribed here. As an example, once we trained the distribu-
tion parameters of the tract variables associated with Lips-
feature of /u/ and those with TongueDorsum-feature /i/
using English utterances only, these distributions will be
gated, at the lower model-articulator and acoustic levels,
via the nonlinear mappings (Eqns.(2) and (4)) to automat-
ically produce the appropriate distribution for French /y/
and Chinese /y/ without use of French or Chinese utter-

ances. Hence, it is the carefully structured components of
the recognizer which give the cross-language portability.

6. SUMMARY AND DISCUSSIONS

This paper has provided some accounts of a new speech rec-
ognizer, currently under development, which aims at inte-

grated multilingualism enjoying cross-language portability.
It will potentially overcome many serious limitations of the
current, mainstream data-driven approach to speech recog-
nition. One immediate limitation is the large e�orts and
resources required to perform data collection/labeling and
system tuning when a recognizer is ported from one lan-
guage to another (and from one recognition task to another
even within the same language). The drawbacks of the
conventional data-driven approach to multilingual speech
recognition root in its (intentional but justi�able) igno-
rance, in the recognizer design, of the internal phonological
(symbolic) and phonetic (numeric and dynamic) structures
underlying all members of human languages.
The framework described in this paper is a signi�cant ex-

tension of that described in [5], where the overlapping fea-
tures designed originally for American English are modi�ed,
generalized, and only slightly expanded to cover a number
of other languages. It is also a natural extension of the rec-
ognizer described in [6], where the modeling component for
the dynamic pattern in speech production is pushed from
the surface acoustic domain inwardly to the internal, ab-
stract \task" space spanning the coordinates of the tract
variables. Conspicuously missing, however, in the current
framework are direct modeling of dynamics on biomechanic
articulators and the possibility of using acoustic/perceptual
criteria as direct feature correlates.9 In an attempt to work
out a consistent recognition framework unifying potentially
all languages, signi�cant di�culties have been encountered

9Both of these two aspects have been included in a separate

speech production model described elsewhere [7, 13].

with use of acoustic/perceptual criteria in de�ning \tasks"
of speech production for multiple languages. Use of vocal-
tract constrictions in a stylized (and normalized) vocal tract
to de�ne such tasks, on the other hand, enables e�ective ex-
ploitation of a rich source of speech knowledge across lan-
guages (e.g. [3, 9, 11]) and gives a head start in formulating
the speech recognition framework. Armed with a powerful
statistical formalism, we are con�dent that the recognizer
described in this paper will compensate for any incomplete
nature of such knowledge and make a workable system en-
joying the desirable integrated-multilingualism.
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