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ABSTRACT

Smoothed estimation and utterance veri�cation are intro-
duced into the N-best-based speaker adaptation method.

That method is e�ective even for speakers whose decod-
ings using speaker-independent (SI) models are error-prone,
that is, for speakers for whom adaptation techniques are

truly needed. The smoothed estimation improves the per-
formance for such speakers, and the utterance veri�ca-
tion reduces the required amount of calculation. Perfor-

mance evaluation using connected-digit (four-digit strings)
recognition experiments performed over actual telephone
lines showed a reduction of 36.4% in the error rates for

speakers whose decodings using SI models are error-prone.
To try and �nd an e�ective model-transformation for
speaker adaptation, we discuss replacing mixture-mean

bias estimation by the widely used mixture-mean lin-
ear-regression-matrix estimation.

1. INTRODUCTION

In continuous mixture-density hidden Markov model
(HMM)-based speech-recognition systems, the performance
of speaker-independent (SI) phoneme HMMs for some

speakers is often poor. Techniques that adapt the param-
eters of SI phoneme HMMs to each speaker and thus im-
prove the performance are therefore important. These tech-

niques are usually classi�ed as supervised or unsupervised,

in which either training utterances with or without the tran-
scriptions are used, respectively. They can also be classi�ed

either o�-line or on-line.

Instantaneous adaptation is unsupervised and on-line:

the recognition utterances are used to estimate the adapta-
tion transformation. It is especially useful in applications

where there is only a very brief interaction between the
speaker and the system [1][2]. This technique must work
using only a small amount of data, such as a few words or

a single sentence.

In general, unsupervised adaptation techniques use a rec-

ognized word sequence, W �, obtained using SI phoneme

HMMs. Parameter set � of the SI phoneme HMMs is
adapted to each speaker by �nding the control parameter

set � in model transformation function G�(�) that maps �

to the speaker-adapted parameter set according to the fol-
lowing equation, which is based on, for instance, maximum

a posteriori (MAP) estimation [3].

~� = argmax
�

f(XjW �

; �; �)g(�); (1)

where X is an observation sample, f(�) is the likelihood
function, and g(�) is the a priori density function. Speaker-

adapted parameter set ~� is calculated using ~�:

~� = G~�(�):

However, recognition is error-prone for some speakers, and
the adaptation usually does not work for those speakers.
Our proposed N-best-based instantaneous speaker-

adaptation method is e�ective even for error-prone speakers

[4]. This method �nds ~� and ~W such that

(~�; ~W ) = arg max
(�;W )

f(XjW;�; �)g(�)P (W ); (2)

where P (W ) is the a priori probability of the word sequence

W . (In the connected-digit recognition task used in this pa-
per, P (W ) is assumed to be constant for all word sequences
and is thus ignored.)

Because it is too costly to attempt speaker adaptation
for all possible word sequences, to reduce the search space
without losing the correct sequence, the N-best paradigm of

multiple-pass search strategies [5] is used to calculate likely
sequences. In this method, hierarchical adaptation with
several estimation iterations is used to constrain � in order

to avoid estimating � at an unexpected local maximum.
In each iteration, the adapted phoneme models for the se-

quence that has the highest likelihood value are selected

and used in the next iteration. However, the correct word
sequence does not always show the highest likelihood value

in the earlier estimation iterations where adaptation is in-
su�cient. In particular, when the correct word sequence of

the input speech is recognized as one of the lower best using
SI phoneme HMMs, the speech is often decoded incorrectly
even when adaptation is used.

We have thus added a smoothed estimation technique in
which not only the sequence with the highest likelihood
value after adaptation but also the other sequences are

taken into account. In this technique, a con�dence mea-
sure for each sequence is de�ned according to its likelihood
value after adaptation; value of each model parameter is

calculated as the weighted sum of the values of the model

parameters for all N-best sequences using the con�dence
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measures. We have also added an utterance veri�cation
technique that reduces the required amount of calculation.

In our original method, to cope with the insu�cient amount
of data, mixture-mean bias estimation based on MAP was
used. To try and �nd an e�ective model-transformation

for speaker adaptation, we discuss replacing mixture-mean
bias estimation by the widely used mixture-mean linear-
regression-matrix estimation based on maximum likelihood

linear-regression (MLLR) [6].

2. SMOOTHED N-BEST ADAPTATION

The proposed method consists of three steps:

1. Multiple word-sequence hypotheses of the input speech
fW1;W2; . . . ;WNg are obtained using SI phoneme

HMMs by using N-best decoding.

2. The parameters of the phoneme models are adapted
for each decoding by �nding �n:

�n = argmax
�

f(XjWn; �; �)g(�);

�n  G�n (�):

3. A con�dence measure Cn is de�ned for instance:

Cn =
1

exp(�[ ~Lmax �
~Ln])

;

where ~Lmax is the highest log-likelihood value after

adaptation, ~Ln is the log-likelihood value for Wn after
adaptation and � is an experimental parameter. After
Cn is calculated for each decoding, the parameters of

the phoneme models are calculated:

~�  

PN

n=1
Cn�n

PN

n=1
Cn

:

The di�erence between our original method [4] and this

enhanced version is in Step 3. Originally, in Step 3, the
decoding providing the maximum-likelihood value was se-
lected for the speech, and the speaker-adapted phoneme

models for that decoding were used.

Steps 2 and 3 in both methods are iterated until the
adaptation in Step 2 becomes su�ciently precise by us-
ing the hierarchical codebook adaptation algorithm [7][8].

This algorithm was developed for speaker adaptation in
vector-quantization-based systems: the reference codebook
elements are clustered hierarchically by increasing the num-

ber of clusters, and adaptation to the speaker is performed
hierarchically from the global individuality characteristics

down to the local ones. In practice, the mixture-mean bias

model, in which the biases are shared by the distributions
in the same cluster, is used for model transformation func-

tion G�(�), and the number of biases or matrices (i.e., the

number of clusters) increases as the number of estimation
iterations increases.

In Sections 2.1 and 2.2, we explain how the mixture
means are clustered and the mixture-mean biases are es-

timated.

2.1. Hierarchical clustering

In our method, a binary tree-structure is created from the
input speech. The number of estimation iterations corre-

sponds to the depth of the tree, and the number of leaves
on each level corresponds to the number of clusters. The
mixture-density distributions are classi�ed into 2M�1 clus-
ters based on the distances between the centroids and the

mean vectors of the distributions, where M is the number
of estimation iterations.

2.2. Bias estimation

For each sequence Wn in Step 2, the mixture-mean bias set

fb1n; b
2
n; . . . ; b

I
ng for clusters 1 to I is approximated while

f(XjWn; fb
i
ng; �)g(�) is locally maximized using MAP esti-

mation, where bin is given by

G
b
�(j;k)
n

(mjk) = mjk + b
�(j;k)
n : (4)

Here, mjk is the mean vector of the mixture component
k in state j, and �(�) is a membership function indicating

the cluster to which the mixture component in the state
belongs. The expectation-maximization reestimation for-
mula is shown in Eq. (3) , where �jk and �jk are the a priori

density parameters, rjk is the precision vector, and cjkt is
the probability of observation vector xt generated by the
HMM at time t being in state j with mixture component

k. To maintain continuity between the clusters, the bias
for each mixture mean of all phoneme HMMs is calculated
as the weighted sum of the biases fb1n; b

2
n; . . . ; b

I
ng based on

the distances between the centroids and the mixture-mean
vector.

3. EXPERIMENTAL EVALUATION

3.1. Conditions

The database we used for creating SI (four-mixture Gaus-
sian) HMMs consisted of Japanese digit-strings (one, two,
and four digits) spoken by 177 male speakers (24,194 strings
in total). The data was collected by NTT over actual tele-

phone lines in a metropolitan area. In our experiments,

each digit was represented using sub-word HMMs (head,
body, and tail models [9][10]) or using whole-word HMMs,

depending on the context. We used 100 sub-word HMMs

(43 head, 13 body, and 54 tail models) and 13 whole-word
HMMs to represent the digits 0 to 9.

The data used for adaptation and recognition testing

consisted of four-digit strings spoken by 50 male speakers

randomly selected from a di�erent database consisting of
data collected by NTT Data over actual telephone lines in
seven di�erent areas [11]. Six di�erent strings were used

per speaker. The ten best hypotheses were decoded us-
ing SI digit models, and the percentage of correct strings



Method Di�cult spkr Easy spkr Avg.

Baseline 59.3 - 93.9 87.7

1-best 63.0 [10.1] 94.7 89.0

10-best 70.4 [27.3] 92.7 88.7

Smoothed 10-best 74.1 [36.4] 92.7 89.3

Table 1. String recognition rate (%) for several

adaptation methods ([ ]: error reduction rate (%)).

included within these ten best decodings was 97.3%. Six-

teen mixture-mean biases were estimated for each string by
using hierarchical clustering with �ve estimation iterations
(Mmax = 5). The 50 speakers were classi�ed into two sets:

one set consisted of 9 \di�cult" speakers, each of whom
had two or more strings recognized incorrectly using the SI
HMMs; the other set consisted of the remaining 41 \easy"

speakers, each of whom had one or zero strings recognized
incorrectly.

The 12th-order cepstral and delta-cepstral coe�cients

were calculated. Linear predictive coding analysis was used
with a frame period of 8 ms and a frame length of 32 ms.
Cepstral mean subtraction was performed for each utter-
ance.

3.2. Results

Table1 lists the string recognition rates and the error re-
duction rates compared with the baseline performance. In
the \1-best" method, the recognized sequence is used for

adaptation in the conventional way. The \10-best" is our
original method [4], and the \Smoothed 10-best" is our en-
hanced version. The Smoothed 10-best method was the

most e�ective for di�cult speakers whose decodings using
SI models were error-prone (36.4% error reduction).

4. INCORPORATION OF UTTERANCE

VERIFICATION

We also added an utterance veri�cation technique to reduce

the required amount of calculation for our method, in which
the adaptation for one utterance must be applied N times
for each iteration. For strings recognized correctly using

SI models (set A) and for strings recognized incorrectly us-
ing SI models but correctly through adaptation (set B), we

examined the log-likelihood ratios between the likelihood

values for strings recognized as best and second best us-
ing SI models (Figure 1 ). We found that the log-likelihood

ratios for set B were small and that 90.5% of the strings

included in set A had higher log-likelihood ratios than the
highest log-likelihood ratio for set B. For those strings it is
not necessary to use N-best decoding; that is, adaptation
can be done by simply using best decoding without any

degradation in performance. Therefore, if utterance veri�-
cation, in which the threshold shown by the dashed line in
Figure1 (B) is used in order to judge whether the N-best

decoding is necessary or not, is performed, the calculation
amount for our method can be greatly reduced.

Table 2 lists the calculation reduction rates in real time

and and the string recognition rates when using the above

utterance veri�cation (UV) with a posteriori threshold. Ut-
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Figure 1. Histograms of log-likelihood ratios.

Method Calc. red. Avg. rec. rate
rate without UV with UV

10-best 77.9 88.7 89.7

Smoothed

10-best 80.1 89.3 90.0

Table 2. Calculation reduction rate (%) in real time

and improved recognition rate (%) with utterance

veri�cation (UV).

terance veri�cation not only reduced the calculation time,

but also improved the performance for both our original and
enhanced methods. The average recognition rate for the

Smoothed 10-best method increased from 89.3% to 90.0%

(the error-reduction rate compared with the baseline per-
formance increased from 13.0% to 18.7%).

In N-best-based adaptation, strings recognized cor-
rectly using SI models may become misrecognized through

adaptation, probably because adaptation by constrained
mixture-mean bias-estimation is not su�cient for some ut-
terances, so the correct word sequences do not show the

highest likelihood values. In our experiments described in
Section 3, the number of utterances so a�ected was seven
for the 10-best method and six for the Smoothed 10-best

method. With utterance veri�cation, this number was re-
duced to four in both cases.

5. BIAS VS. LINEAR-REGRESSION MATRIX

ESTIMATION

To �nd an e�ective model-transformation function for

speaker adaptation, we also conducted N-best adaptation

experiments using linear-regression (LR) model for the



Method Di�cult spkr Easy spkr Avg.

LR 10-best 70.4 [27.3] 93.9 89.7

LR 10-best
with UV 72.2 [31.7] 93.9 90.0

Table 3. String recognition rate (%) for linear-

regression matrix estimation ([ ]: error reduction

rate (%)).

model-transformation function. For each sequence Wn in

Step 2 in Section 2, we approximated the (p + 1) � p-LR-
matrix set f[a1n; b

1
n]; [a

2
n; b

2
n]; . . . ; [a

I
n; b

I
n]g (p : dimension of

observation vector, ain : p � p-matrix, bin : p [dimensional]-

vector) while locally maximizing f(XjWn; f[a
i
n; b

i
n]g; �) by

using MLLR [6], where [ain; b
i
n] is given by

G
[a
�(j;k)
n ;b

�(j;k)
n ]

(mjk) = a
�(j;k)
n mjk + b

�(j;k)
n : (5)

Table 3 lists the string recognition rates for LR-matrix
estimation without and with utterance veri�cation when a
global LR diagonal matrix was estimated in one estimation

iteration. Although the LR 10-best method with UV per-
formed as well as the Smoothed 10-best method with UV
using bias-estimation (Table2 ) on average for all speakers,

we believe that the main need is to improve the performance
for di�cult speakers. As shown in Table1 , the Smoothed
10-best method produced the biggest increase in perfor-

mance for di�cult speakers. The LR 10-best method is
a promising approach because fewer parameters need to be
estimated (a p� p-diagonal-matrix plus a p-vector, that is,

2 p-components) than in the Smoothed 10-best method (16
p-vectors). However, so far we have been unable to improve
the performance of the LR 10-best method by increasing the

number of LR matrices or by applying smoothed estimation
in one iteration. This is probably because of the incontinu-
ity between clusters after adaptation. We are now studying
methods to maintain continuity and to estimate multiple

LR matrices hierarchically and smoothly over several iter-
ations.

6. CONCLUSION

We have presented an N-best-based instantaneous speaker

adaptation method with smoothed estimation for contin-

uous mixture-density HMM-based speech-recognition sys-
tems. Connected-digit (four-digit strings) recognition ex-
periments performed over actual telephone lines showed

that this method, which can work with only a small amount
of data, is especially e�ective for di�cult speakers whose de-
codings using SI models are error-prone. We also showed

how the use of utterance veri�cation reduces the required
amount of calculation and reduces the number of strings

that become misrecognized through adaptation. Compar-

ison of the performance between mixture-mean bias esti-
mation and LR-matrix estimation showed that both meth-

ods were equally e�ective on average, but smoothed bias-

estimation was more e�ective for di�cult speakers. With
the former approach, the error-reduction rate for di�cult

speakers was 36.4%, and the average for all speakers was
18.7%.
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