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ABSTRACT

Speaker adaptation algorithms often require a rather large
amount of adaptation data in order to estimate the new pa-
rameters reliably. In this paper, we investigate how adap-
tation can be performed in real{time applications with only
a few seconds of speech from each user. We propose a mod-
i�ed Bayesian codebook reestimation which does not need
the computationally intensive evaluation of normal densi-
ties and thus speeds up the adaptation remarkably, e.g. by
a factor of 18 for 24{dimensional feature vectors. We per-
formed experiments in two real{time applications with very
small amounts of adaptation data, and achieved a word er-
ror reduction of up to 11%.

1 INTRODUCTION

Speaker adaptation has been a �eld of intensive research
for several years. Great progress has been made in the de-
velopment of theoretically well{founded algorithms as well
as in the achieved experimental results. Approaches based
on optimality criteria such as Maximum Likelihood (ML)
and Maximum a posteriori (MAP) have received the most
attention in the last few years.
Motivated by this progress we investigated the perfor-

mance of these methods under di�cult conditions, where
the system is only used for a short time (e.g. one dialog) by
each speaker and where no enrollment speech can be col-
lected o�{line. A typical example for this situation is the
train timetable information system EVAR developed at our
institute [3], which is accessible via public telephone line
since January 1994. In this task, the best use of speaker in-
formation is certainly made by applying incremental adap-
tation after each utterance. Adaptation methods can only
use the results of an automatic labeling of the previous ut-
terance(s); thus we are dealing with unsupervised adapta-
tion. Since our speech recognition system is based on semi{
continuous Hidden Markov Models (SCHMM), we concen-
trate on adaptation of the codebook parameters which o�er
good possibilities for fast adaptation.
A number of investigations [6, 8] have shown that with

little adaptation data, good results are achieved by MAP
reestimation of the codebook mean vectors. Also, a combi-
nation of a linear codebook transform with the MAP rees-
timation has proven to perform better than either of the
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two approaches alone [12, 8]. Therefore, we chose to inves-
tigate each approach separately �rst, and then to combine
the optimized methods.

A common problem of both ML and MAP adaptation
approaches is that the resulting estimation formulas have a
relatively high computational cost due to the evaluation of
high{dimensional Gaussian densities. We therefore investi-
gated how the estimation could be simpli�ed and found a
modi�cation, which is based on a theoretical consideration
and at the same time speeds up the computation rapidly.

The rest of this paper is organized as follows: In sec-
tion 2 we shortly review the ML estimation of linear code-
book transforms. In section 3 we introduce a modi�ed
Bayesian estimation which will be called conservative esti-
mation. Section 4 treats the issues related to the combina-
tion of the two adaptation schemes in the scenario of unsu-
pervised and incremental adaptation. Experimental results
are presented in section 5.

2 ACOUSTIC ADAPTATION

Acoustic adaptation methods attempt to compensate for
external in
uences on the speech signal by performing a
transformation of the feature space, or accordingly, of the
codebook densities. The idea to perform acoustic adap-
tation by estimating a codebook transformation with a
Maximum{Likelihood (ML) approach was �rst presented by
[1] and has been applied to several kinds of transformations
[2, 7, 12]. The transformation parameters � are obtained
by maximizing the likelihood of observing the adaptation
sample X:

�̂ML = argmax
�

p(Xj�): (1)

The most general transformation which has been investi-
gated so far is a linear transformation of the codebook den-
sities (means and covariances). However, there is no closed
form solution for the estimation unless the HMM{system
works with diagonal covariance matrices [2].

Yet a solution is possible if only the means are trans-
formed. The goal is to estimate a transformation matrix
A and a translation vector b which transform the means
of the K codebook densities N (xjm
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[7]; the estimation requires solving the following system of
N linear equations, where N is the number of coe�cients
that make up the codebook transformation:
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Although a more compact notation was used in [7], we pre-
fer to write the linear equations in the form of a matrix and
a vector equation, since it visualizes the structure of the
equation system. The variables nk and �

k
are calculated

as in [2] from the observation sequence via Baum{Welch or
Viterbi algorithm.
This method for acoustic adaptation has the advantage

that the transformation matrix can be restricted to any
number of coe�cients according to the expected amount
of adaptation data and the allowed computation time. We
have developed an e�cient computation scheme for the co-
e�cients of the linear equation system which guarantees
that no computation is done more than once.

3 PHONE SPECIFIC ADAPTATION USING
MODIFIED BAYESIAN ESTIMATION

In contrast to acoustic adaptation, phone speci�c adapta-
tion methods perform an individual reestimation of code-
book densities or even HMM parameters. Bayesian adapta-
tion has received a great deal of attention since Gauvain and
Lee [5] developed formulas to adapt all parameters of con-
tinuous density HMMs. This is certainly the case because
the method has optimal properties and leads to signi�cant
improvements. In cases where adaptation data is sparse,
usually only the codebook mean vectors are adapted by
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(3)

This reestimation formula is very intuitive, because it is
basically an interpolation between a weighted mean of the
observations x

t
and an a priori vector m

k
, which can be

chosen as the mean vector from the speaker independent
codebook. The parameter �k controls the adaptation speed,
while �t(k) is computed via
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if the optimal state sequence with states i is computed by
the Viterbi algorithm. Here, cik denotes the output proba-
bility for codebook class k in state i. It is easy to see that
the evaluation of the high dimensional normal densities for
every observation vector is computationally very demand-
ing.
An issue that has not been addressed yet in the con-

text of Bayesian (MAP) adaptation for SCHMM is that
the optimality of the codebook{HMM combination is vio-
lated when adapting the codebook alone while leaving the
HMM state output probabilities unchanged. This has been
reported for Maximum Likelihood (ML) adaptation [9], but
as the di�erence between ML and MAP estimation lies only
in the chosen a priori distribution, the same problem arises
in the MAP case. The estimation according to equations
(3) and (4), which we will call conventional estimation in
the following, has the e�ect that the "'phonetic meaning"'
of the codebook classes for the HMM is changed. This ef-
fect is best illustrated by the following example: Consider a
speaker who typically pronounces an /a/ like an /o/. Due
to the evaluation of the Gaussian densities in equation (4),
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Figure 1. Illustration of incremental adapta-
tion schemes

an observation of this vowel will only give a small contri-
bution to the reestimation of the codebook densities that
represent the class /a/, but will contribute strongly to the
reestimation of the densities that represent the class /o/. In
normal HMM training, this would be compensated by the
reestimation of the state output probabilities; however, in
adaptation this step is not possible because of the limited
size of the observation sequence. Thus, the codebook{HMM
combination is no longer optimal.

We can avoid these problems by introducing a modi�ed
estimation

�t(k) = cik: (5)

By omitting the normal densities, we ensure that the es-
timation changes the codebook densities representing the
class /a/ as was intended. This modi�cation was proposed
for ML adaptation in [9], but we can obviously apply it to
MAP adaptation with the same desired e�ect. The method
has been reported to give signi�cantly better results in ML
adaptation than the conventional estimation [9].

Although we have motivated the modi�ed method from
a theoretical point of view, it also o�ers some very desir-
able properties for practical use. Most importantly, it needs
much less computation time than the conventional estima-
tion and is therefore much more suited for use in real{time
applications. A second advantage shows up when it is com-
bined with the estimation of a linear codebook transform
in an incremental adaptation scenario as shown in Figure
2. This is explained in the next section.

4 COMBINING ACOUSTIC AND PHONE
SPECIFIC ADAPTATION

While acoustic adaptation attempts to reduce variations
that have an in
uence on the whole feature space, e.g. caus-
ing a shift or rotation of all feature vectors, phone spe-
ci�c adaptation aims to cover individual pronunciations by
adapting each codebook class separately. Thus, combining
both approaches should lead to a further improvement since
they handle di�erent sources of speaker variation.

In incremental adaptation, we can basically distinguish
between two ways of using the collected adaptation data
which are illustrated in Figure 1. One way is to use only the
current utterance to reestimate the most recently adapted
codebook. The drawback of this method is that if an utter-
ance is rather short, the estimation is unreliable and may
give bad results.
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Figure 2. Illustration of unsupervised incremental adaptation

The alternative is to always adapt the speaker indepen-
dent codebook using the whole adaptation sample collected
so far. Depending on the adaptation method, however,
this approach may cause problems if the computation must
be done for the whole sample every time. This is what
happens when we combine the conventional acoustic and
phone speci�c adaptation schemes: the acoustic adaptation
can re{use the values �t(k) computed from previously ob-
served samples because the adaptation is always performed
based on the speaker independent codebook. However, the
phone speci�c adaptation is then based on the acoustically
adapted codebook, which is di�erent after every new ob-
servation. Thus, the values �t(k) have to be recomputed
for the whole sample, which is prohibitive in a real{time
application.
If we now consider the proposed conservative estimation

in the same scenario, we see that the values �t(k) = cik do
not depend on the previously adapted codebook. Thus we
can re{use the values �t(k) from the previously observed
samples and need to compute only those of the most recent
observation.

5 EXPERIMENTAL RESULTS

A series of experiments has been carried out to evaluate
the performance of the suggested methods under realistic
conditions. We only give a short description of our speech
recognizer here; a more detailed description can be found
in [4].
For the results presented in this paper, a short time anal-

ysis of the speech signal was performed every 10 ms, yield-
ing a 24{dimensional feature vector that consists of twelve
cepstral coe�cients and their �rst order derivatives. Word
recognition was based on semi{continuous Hidden Markov
Models using polyphone models as subword units [10] and
a codebook af 256 classes with full covariance matrices. We
performed a one-pass recognition using a bigram language
model and skipped the second pass that uses higher order
polygram language models, because our aim was to com-
pare the improvement achieved by adapting the acoustic
models.
We used two data bases that contain sentences from dif-

ferent applications. One test set (T1) is part of the EVAR
sample collected at our instistute, which contains real di-
alogs with our train timetable information system (cf. sec-
tion 1). The test set comprises 234 dialogs; an average
dialog consists of ten utterances which amount to a total of
only some 30 seconds of recorded speech per speaker.
The second test set (T2) is taken from the data base of

dialogs in the VERBMOBIL project [11]. These are di-

alogs between two humans who try to arrange an appoint-
ment. The test set contains utterances of eight speakers
with a total average length of roughly 1 1/2 minutes, split
into ten utterances on the average. The word error rate
(= 100%�word accuracy) of speaker independent recogni-
tion is 24% on T1 and 46% on T2, which means that the
automatic labeling procedure produces a lot of wrong la-
bels.
We also used a small validation sample V1 to perform

some preliminary experiments and to adjust the parameters
of the adaptation methods. V1 is taken from the EVAR
dialogs, but is disjunct from T1. No optimization was done
on the test samples.
First, we compare the runtime of the di�erent adapta-

tion methods. Both acoustic and phone speci�c adapta-
tion comprise an estimation step which is identical for both
adaptation methods, and the computation of the new mean
vectors. The estimation step consists basically of a weighted

summation over the observed feature vectors
P

T

t=1
�t(k)xt;

so its computation time depends on the length of the adap-
tation sample. We measured the runtimes using a sample
of 1000 frames equalling ten seconds of speech.
Table 1 shows the runtimes for the single computation

steps on a HP 9000/735. We see that conventional es-
timation requires about 15 seconds of computation time,
whereas conservative estimation is 18 times faster, taking
less than one second. It is also worth noting that the com-
plexity of conventional estimation depends quadratically on
the dimension of the feature space, while conservative esti-
mation is independent of it. Comparing the di�erent adap-
tation methods, we see that phone speci�c adaptation is
very fast, whereas the estimation of a large transformation
matrix for acoustic adaptation is obviously prohibitive in a
real{time application.
In a �rst series of experiments we investigated the use

of acoustic adaptation by estimation of a linear transform.
Since our preliminary experiments showed that estimating
a full 24 � 24 transformation matrix consumes too much
computation time, it was necessary to reduce the number
of parameters. The dominating part of the computation is
the solution of a linear equation system with N parameters
(equation 2) that has a complexity of O(N3).
There are several possible ways of reducing the number

of parameters in the computation. We found that a good
compromise is to estimate a full linear transformation for
the stationary features, which are the �rst twelve features
in our feature vectors. For the other features, only the
translation parameters are estimated. We also applied a
thresholding rule which keeps the parameter values in a



conventional conservative acoustic acoustic phone speci�c
estimation estimation adaptation adaptation adaptation

24� 24{dim 12� 12{dim

time in sec 14.4 0.84 105 3.14 0.02

Table 1. Runtimes of the di�erent computations. Each adaptation method consists
of an estimation step and an adaptation step.

word error rates in % T1 T2

no adaptation 22.89 46.03

acoustic adaptation
conventional estim.

22.01 43.39

phone speci�c adaptation
conventional estim., � = 5

22.24 41.75

phone speci�c adaptation
conservative estim., � = 15

22.04 43.99

combined acoustic and
phone speci�c adaptation

21.90 41.10

improvement in % 4.3 10.7

Table 2. Experimental results for the di�erent
adaptation methods.

reasonable range.

These constraints were developed in the experiments on
the validation sample V1. They resulted in a 4% reduction
of the word error rate on T1 and a 6% reduction on T2.
Table 2 shows those results; adaptation was performed on
the whole sample from each speaker.

In a second series of experiments, we evaluated the phone
speci�c adaptation scheme for conventional and conserva-
tive estimation. An unsatisfactorily solved problem is still
the choice of the prior parameters in Bayesian adaptation;
since we only adapt the codebook means, we need to choose
only the parameters �k. It is possible to estimate each �k
separately using the method of moments [6], but this is very
time consuming since it requires the training of speaker de-
pendent HMMs from large samples. We chose to estimate
a common parameter � = �k for all codebook classes using
the validation sample; we only distinguish between �convent
for conventional and �conserv for conservative estimation.

The results (Table 2) show that conservative estimation
performed better than conventional estimation on T1, giv-
ing a 4% improvement. On the other hand, conventional
estimation gave better results for T2 with a 10% reduction
of error rate. This behaviour may be due to the greater
length of the adaptation samples in T2; also, the parame-
ter value � = 15 may not be optimal for the VERBMOBIL
application since the validation sample is taken from the
EVAR dialogs.

Finally, we combined the linear codebook transform with
the Bayesian adaptation methods and applied it in the sce-
nario of incremental adaptation as illustrated in Figure 2.
Note that each adapted codebook is �rst used for the recog-
nition of the following utterance, so the �rst utterance of
a speaker is always recognized with the unadapted system
only. It should be stressed that these are exactly conditions
as they appear in a real{time application. We observed a

4% word error reduction on T1 and an 11% reduction on
T2.
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