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ABSTRACT

We propose an improved maximum a posteriori (MAP)
learning algorithm of continuous-density hidden Markov model
(CDHMM) parameters for speaker adaptation. The algorithm is
developed by sequentially combining three adaptation
approaches. First, the clusters of speaker-independent HMM
parameters are locally transformed through a group of
transformation functions. Then, the transformed HMM
parameters are globally smoothed via the MAP adaptation.
Within the MAP adaptation, the parameters of unseen units in
adaptation data are further adapted by employing the transfer
vector interpolation scheme. Experiments show that the
combined algorithm converges rapidly and outperforms those
other adaptation methods.

1. INTRODUCTION

One useful approach to improve the speaker-independent (SI)
speech recognition system is to adapt the original SI hidden
Markov models (HMMs) for a new speaker using some
speaker-specific adaptation data. In the literature, there are
three classes of approaches successfully applied for speaker
adaptation. The first one is the transformation-based adaptation
which individually transforms the clusters of HMM parameters
according to their transformation functions [1-2]. The maximum
likelihood (ML) stochastic matching algorithm [1] (also
denoted as the SM algorithm) provides a solution for obtaining
the transformation parameters. The second one is the maximum
a posteriori (MAP) estimation of HMM parameters which
optimally incorporates the prior knowledge of SI HMM
parameters into the adaptation data [3-4]. The third one is the
techniques for adapting the HMM parameters of unseen units
in adaptation data [5-7]. The transfer vector interpolation
scheme [5-6] (also denoted as the TVI scheme) is such an
approach for adapting the HMM mean vectors of unseen units
by interpolating the transfer vectors of seen units. In fact, these
three approaches can be combined to improve the performance
of speaker adaptation.

Generally, when the adaptation data is limited, the
transformation-based adaptation can efficiently transform all
the HMM parameters through some cluster-dependent
transformation functions [2]. On the other hand, when the
adaptation data is abundant, the MAP adaptation of HMM
parameters can effectively adapt each HMM component by
merging its SI parameter with the corresponding adaptation
data. By combining these two techniques [8-9], the adaptation
efficiency and effectiveness can be simultaneously achieved. In
this study, we propose a combined MAP estimation of
transformation parameters and HMM parameters. The
parameters are estimated via the expectation-maximization
(EM) algorithm [10]. After some simplifications, the estimation
of transformation parameters is reduced by applying the SM
algorithm. The resulted hybrid algorithm (also denoted as the
SM-MAP algorithm) is then constructed by alternately and
iteratively performing the SM algorithm and MAP adaptation.
Furthermore, we incorporate the TVI scheme as a
postprocessor of SM-MAP algorithm to adapt the parameters of
unseen units within MAP adaptation. The SM-MAP-TVI
algorithm is accordingly produced. In our comparative
experiments, we find that the SM-MAP-TVI algorithm
achieves the best performance for a wide range of adaptation
data sizes.

2. MAP TRANSFORMATION AND
ADAPTATION

When the transformation-based adaptation is combined with
the MAP adaptation, two sets of parameters need to be
estimated. One is the set of continuous-density HMM
(CDHMM) parameters, Λ Σ= { , , }, , ,ω µn m n m n m , where ω n m, ,

µ n m,  and Σ n m,  are the mixture gain, mean vector and

covariance matrix of the m-th mixture component from the n-th
state, respectively. The other is their corresponding
transformation parameters, η η= { }c , where c is the cluster

index. Given the adaptation data Y y= { }t  from a new speaker,

the speaker-adaptive (SA) HMM parameters are generated by
performing two stages of adaptation. In theory, the parameters



of hybrid algorithm, θ η= ( , )Λ , can be jointly estimated via

the MAP framework [4]. The MAP estimate θ MAP  is then

obtained by maximizing the posterior likelihood P( )θ Y , or

equivalently the product of a likelihood function P( )Y θ  and a

prior density P( )θ , as follows
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As indicated in [4], the MAP estimate θ MAP  is not easily

solved from Eq. (1). Thus, we apply the EM algorithm to
iteratively increase the posterior likelihood P( )θ Y  of current

estimate θ  and derive the new estimate ′θ  in an optimal

manner. Assuming that the prior densities of two sets of
parameters are independent, the first step of EM algorithm (E-
step) is performed by calculating the auxiliary function given
by
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where S is the state sequence, L is the mixture component
sequence and (Y, S, L) is our choice of complete data. In the
second step (M-step), we find the new estimates ′ = ′ ′θ η( , )Λ
by solving the following maximization problem
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It can be shown [10] that if Q Q( , , ) ( , , )′ ′ ≥Λ Λ Λ Λη η η η  then

P P( , ) ( , )′ ′ ≥Λ Λη ηY Y . Accordingly, by iteratively applying

the E-step of Eq. (2) and the M-step of Eq. (3), we guarantee
that the posterior likelihood never decreases. Moreover, each
iteration of Eq. (3) can be divided into two separate stages. In
each stage, one of the parameters ′ = ′ ′θ η( , )Λ  is maximized

and the other is fixed, i.e.
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As shown in Eqs. (4-5), we can see that the transformation
parameters of new estimates ′η  are first estimated. Given ′η
and current HMM parameters Λ , the new HMM parameters

′Λ  are then estimated. Therefore, two sets of parameters can
be separately estimated via this iterative MAP principle.

To derive the formula for a given density function, we
assume that the HMM parameters are transformed by adding
the Gaussian stochastic biases of new estimates,

′ = ′ = ′ ′η η µ{ } { , }c c cΣ , to the HMM parameters of current

estimates, Λ Σ= { , , }, , ,ω µn m n m n m . The transformation function

is then defined by

G n m n m c n m c n m n m n m′ = + ′ + ′ =η ω µ µ ω µ( ) { , , } { $ , $ , $ }, , , , , ,Λ Σ Σ Σ . (6)

Here, the mixture gain is assumed to be unchanged. Besides, if

we simplify the covariance matrices of ′Σ c , Σ n m,  and $ ,Σ n m  to

be diagonal, the transformation parameters ′ = ′ ′η µ σ{ , }, ,c i c i
2  can

be independently estimated for each vector element. For
notation simplicity, we drop the element index i in the

following expressions. Further, the parameters ′µ c  and ′σ c
2

are assumed to be independent. The mean ′µ c  is modeled by a

single Gaussian density, i.e. P N mc c c( ) ( , )′ =µ τ 2 . The variance

′σ c
2  is constrained to be signal-state-dependent [1] and have a

non-informative prior, i.e. P c( )′σ 2 =constant. Under these

specifications, Eq. (4) can be replaced by
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where γ ηt t tn m P s n l m( , ) ( , , , )= = = Y Λ  is the probability of

being in state n with mixture component m given that the
current parameters ( , )Λ η  generate Y. Then, the

transformation parameters ′µ c  and  ′σ c
2  are derived as
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In Eqs. (7-9), the summations are operated over all the HMM
units belonging to the c-th transformation cluster.

On the other hand, in the second stage, using the same
adaptation observations Y, the transformed HMM parameters
can be further adapted by applying the MAP estimation. In Eq.
(5), if we assume the joint prior density of mixture gain, mean
vector and covariance matrix P( )′Λ  to be a product of

Dirichlet and normal-Wishart densities, the MAP estimate of
HMM parameters ′Λ  can be obtained as shown in [4]. The
transformed HMM parameters of the first stage serve as the



parameters of prior density P( )′Λ . The MAP estimate of

HMM mean vector with indices n and m is written by [4]
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where τ n m,  is the hyperparameter for controlling the

adaptation speed and c n m P s n l mt t t( , ) ( , , , )= = = ′Y Λ η  is the

probability of being in state n and mixture m given that the

updated parameters ( , ) {$ , $ , $ }, , ,Λ Σ′ =η ω µn m n m n m  generate Y.

Therefore, by alternately performing these two stages, the
combined MAP estimates ′ = ′ ′θ η( , )Λ  can be obtained.

However, because the hyperparameters ( , )mc cτ 2  are not easy

to specify, we further assume that the prior density P( )′η  is

non-informative in this study. The MAP estimation of ′η  is

then simplified as the ML estimation which is equivalent to the
SM algorithm [1]. The SM-MAP algorithm is accordingly
generated. In general, the transformation-based SM algorithm
is referred as a local transformation scheme which transformed
the HMM parameters according to their cluster labels. The
MAP adaptation of HMM parameters is referred as a global
interpolation scheme which smoothes the transformed HMM
parameters by combining the corresponding adaptation data. By
simultaneously performing the SM algorithm and MAP
adaptation, the adaptation performance can be improved. The
convergence property is similarly established.

3. SM-MAP-TVI ALGORITHM

According to the MAP adaptation, the HMM parameters are
adapted by interpolating their original parameters with the
associated adaptation data. When the adaptation data is limited,
some unseen HMM parameters can not be adapted. If we can
compensate the weakness of MAP adaptation, the adaptation
performance of SM-MAP algorithm may be further improved.
In this study, we apply the transfer vector interpolation (TVI)
scheme [5-6] as the postprocessor of SM-MAP algorithm for
adapting the HMM mean vectors of unseen units within the
MAP adaptation. The resulted algorithm is denoted by SM-
MAP-TVI algorithm. Using the SM-MAP-TVI algorithm, the
transfer vector (i.e. the difference of adapted mean vector and
its original mean vector) of unseen HMM unit with indices j
and k can be estimated by interpolating those transfer vectors
of seen HMM units with indices n and m. That is, the unseen
HMM mean vectors are adapted by using the equation
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where

w d fj k n m j k n m, , , , , ,exp( )= − 2 ,                     (12)

dj k n m, , ,  is the distance of mean vectors µ j k,  and µ n m,  and f is

the control factor for interpolation.

4. EXPERIMENTS

A series of comparative experiments of speaker adaptation
were conducted to demonstrate the merits of proposed method.
Two databases were collected. The first database is consisted
of 5045 phonetically-balanced Mandarin words uttered by 51
males and 50 females. Each word contained two to four
Mandarin syllables. The SI HMM parameters covering all 408
Mandarin syllables were trained from this database. Usually, a
Mandarin syllable is composed of an initial (or consonant) part
and a final (or vowel) part. For some syllables, only final parts
are existed. To reflect the coarticulation of initials and finals,
we used 93 context-dependent (CD) initials and 38 context-
independent (CI) finals in our experiments. In case of a syllable
with both initial and final parts, the initial and final
subsyllables were respectively modeled by three and four
HMM states. In case of a syllable with only final part, the final
subsyllable was characterized by six HMM states. Hence, a
total of 498 HMM states (279 for initials, 218 for vowels and 1
for background silence) were generated. The feature vector was
composed of 12 LPC-derived cepstral coefficients, 12 delta
cepstral coefficients, 1 delta log energy and 1 delta delta log
energy. Besides, the second database consisted of four
repetitions of 408 isolated Mandarin syllables spoken by a
single female speaker. Three repetitions were used for testing.
The remaining one was used for adaptation. The number of
adaptation data (N) was varied for assessing the adaptation
performance. The cases of N=25, 50, 75, 100, 150, 200, 300
and 408 were included.

Our task is to recognize 408 highly confusable Mandarin
syllables. The recognition system was built by using the
framework of CDHMM. The SI and speaker-dependent (SD)
recognition results will be given. In our implementation, the
speaker adaptation was supervised. The hyperparameter τ n m,

of Eq. (10) and the interpolation control factor f of Eq. (12)
were all fixed to be five. In the SM related (i.e. SM, SM-MAP
and SM-MAP-TVI) algorithms, the HMM parameters were
transformed according to their HMM cluster memberships. The
HMM clusters were generated by separately grouping the
HMM mean vectors of initials and finals into several clusters.
In this study, the cluster numbers for N=25, 50, 75, 100, 150,
200, 300 and 408 were approximately preset to be 9, 17, 17, 33,
33, 33, 65 and 65.

To illustrate the convergence of proposed method, we
plot the average log-likelihood per frame of SM, MAP and SM-
MAP algorithms versus EM iteration number in Fig. 1. The



log-likelihood was averaged across various amount of
adaptation data (N). As seen in Fig. 1, the parameter
estimation of SM-MAP algorithm converges rapidly. Its
asymptotic property can be guaranteed. This phenomenon is
also observed in cases of SM and MAP algorithms. Besides,
we also find that the SM-MAP algorithm achieves the highest
log-likelihood in each iteration.

The top-5 syllable recognition rates using SM, MAP,
SM-MAP and SM-MAP-TVI algorithms are compared in Fig. 2.
We can see that the transformation-based SM algorithm is
better than MAP adaptation for smaller N but worse than MAP
adaptation for larger N. However, the hybrid SM-MAP
algorithm is superior to both of them for most cases of N. This
shows the efficiency and effectiveness of proposed SM-MAP
algorithm. Moreover, when the SM-MAP-TVI algorithm is
performed, we find that the recognition performance is further
improved especially for smaller N. This means that the TVI
scheme does accurately adapt the HMM parameters of unseen
units.
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Figure 2: Comparison of top-5 recognition rates for several
speaker adaptation methods.

5. CONCLUSION

Three types of adaptation techniques were combined to
improve the performance of speaker adaptation. One is the
transformation-based SM algorithm which is feasible to
adaptation under limited adaptation data. The second is the
MAP adaptation of HMM parameters which is effective for
abundant adaptation data. The third is the TVI scheme which is
useful for adapting the unseen HMM parameters in adaptation
data. When these three techniques are sequentially and
iteratively performed, the resulted SM-MAP-TVI algorithm can
simultaneously capture the advantages of SM, MAP and TVI
methods.
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