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ABSTRACT

This paper studies the use of transformation-based speaker
adaptation in improving the performance of large vocab-
ulary continuous speech recognition systems. We present
a formulation of the adaptation procedure that is simpler
than existing methods. Our experiments demonstrate that
speaker normalization continues to be important even after
signi�cant amounts of speaker adaptation. An automatic
clustering algorithm is compared to human expertise in
sorting output distributions into collections that share the
same transformation. We quantify improvements over stan-
dard Bayesian (by maximum a posteriori or MAP) adapta-
tion in terms of (a) speed of adaptation, and (b) robust-
ness to transcription errors. Finally, we discuss the use of
speaker transformations in the training process.

1. INTRODUCTION

Much of the promise of large vocabulary continuous
speech recognition (LVCSR) remains unful�lled because
the current speaker independent (SI) systems do not meet
speed/accuracy requirements. One approach to improving
performance is to limit system usage to one person and
provide customized models for each user. This is usually
accomplished by tuning a SI system based on speech ma-
terial (adaptation data) acquired from a new user. Desir-
able characteristics for speaker adaptation methods include
(a) ability to adapt to a new speaker rapidly and e�ectively,
(b) computational e�ciency, and (c) robustness against de-
viations from the assumed framework. While several strate-
gies for speaker adaptation have been studied [3, 4], an ap-
proach that uses linear regression principles to transform
the acoustic models seems particularly promising [1, 2, 5].

A simple strategy for speaker adaptation is to update the
model parameters of a speech unit (e.g. phoneme) every
time the new speaker utters the unit. The main di�culties
with such an approach are that large numbers of observa-
tions are needed from each new speaker so as to (a) cover
the entire collection of speech units and update them, and
(b) obtain reasonable estimates of the model parameters for
each unit. Given enough (and reliable) speech material, this
method often leads to high performance systems. Although
variants of this method abound, they are generically called
Bayesian or maximum a posteriori (MAP) in the literature
for they can be interpreted as a way to combine apriori in-
formation (SI models) and observed data [4]. Having noted

the requirements of the MAP algorithm, an e�ective strat-
egy may be to build more global strategies for updating
model parameters, i.e., use observations from a speech unit
to update several similar-sounding speech units. One ap-
proach is to use the decision-tree (that is used to cluster
triphones) to update multiple leaves simultaneously [6]. A
second (and more global) approach is to use transformation
techniques to simultaneously update a group of model pa-
rameters. The transformation is derived from linear regres-
sion principles; and involves �tting a linear model between
observations from the new speaker and the SI acoustic mod-
els [2, 5].
The goal of our paper is to investigate a number of issues

in the use of transformation-based speaker adaptation for
improving the performance of LVCSR systems. The paper
is organized as follows. We begin by reviewing our formula-
tion of the regression model and the overall system con�g-
uration. Our formulation is similar to [5] but is simpler in
that (a) it is based on su�cient statistics rather than raw
observations, and (b) it requires only one matrix inversion
per transform. One might wonder whether it is still useful to
perform speaker normalization [8] in addition to extensive
speaker adaptation. Experiments in section 3 indicate that
it provides an additional 5{7% improvement. When large
amounts of adaptation data are available, it is possible to
train more than one transformation. The problem, then,
is to decide which speech units share the same transforma-
tion. Section 4 addresses the issue of whether this decision is
best made by human linguistic expertise or by an automatic
clustering algorithm. Since we update a collection of prob-
ability density functions (PDFs), rather than an individual
PDF (as in MAP), we might expect that the procedure
(a) is more robust to estimation errors arising from inaccu-
rate transcriptions of the adaptation data, and (b) provides
faster adaptation than MAP. Section 5 addresses this issue
by comparing the two methods for supervised and unsuper-
vised adaptation. Finally, we examine the use of speaker
transformations in the training process. In typical model-
building approaches, the baseline (SI) model attempts to
represent a large population of speakers. While we at-
tempt to retain within-speaker variations relevant to speech
events and reduce across-speaker 
uctuations (via channel
normalization, linear discriminant analysis, frequency warp-
ing, etc.), we are not entirely successful. The successful use
of transformation techniques indicates that simple linear
models provide a reasonable means of describing individ-
ual speaker characteristics. It raises the issue of applying



similar mappings during training. If baseline acoustic mod-
els (representing any speaker) can be transformed to match
a new speaker, perhaps we could apply another (the dual)
transformation to the speaker's data so that all the training
speakers \look alike." The idea then is that data from each
training speaker will be converted to a normalized form,
and SI models (built in the usual way from such normal-
ized data) upon transformation will provide good models
for each new speaker.

2. PROBLEM FORMULATION

Given a collection of new data and a set of baseline acoustic
models, we run Baum-Welch adaptation (i.e., the EM algo-
rithm) to produce, for each mixture component j with a K{
dimensional mean vector, x[j], (a) an average (y[j]) of all
frames (probabilistically) assigned to the component, and
(b) the sum of fractional frames assigned (N [j]). We can
think of y[j] and N [j] as being su�cient statistics derived
from frames of observed data, z[n]. Let C be a collection
of components for which the new data is assumed to share
the same transformation. We assume

y[j] = Ax[j] + e[j] ; for all j 2 C ;

where e[j] � N (0; I�2=N [j]) describes the regression error.1

The scaling by N [j] re
ects the averaging done to calculate
the statistic, y[j]. Our assumption that the error covariance
is a scaled identity matrix stems from our use of linear dis-
criminant analysis, which forces the average within-class co-
variance of the feature vector to have that form. The max-
imum likelihood estimate (MLE) for the regression matrix,
A, is obtained by solving a weighted least squares problem,
and is given by
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where Nc is the number of components in the collection C.
It requires a single K � K matrix inversion, where K is
the number of features in the observation stream. We con-
sidered two other possibilities for modeling the regression
error covariance. For an arbitrary (but known) covariance,
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1In theory, the regression error consists of two terms, (a) �[j],

the sampling error in y[j] whose variance is inversely propor-

tional to N [j] and can be reduced to zero, and (b) �[j], the error

incurred by the linear model assumption, which does not depend

on the amount of adaptation data. In particular, �[j] is di�cult

to characterize and takes on greater signi�cance as the sample

size increases. We did not account for �[j] in this study but hope

to address this in the future.

where 
 denotes the Kronecker product and vec (T) de-
notes the column-by-column concatenation of a matrix T.
This requires inverting a single matrix of size K2 � K2.
For diagonal covariances, this solution can be simpli�ed [5],
and would involve the inversion of K matrices, each of size
K � K. Both assumptions were deemed unattractive be-
cause (a) they are computationally expensive and (b) a pri-
ori calculations of the required average within-speaker co-

variances, �[j], are cumbersome. In particular, the model

variances used in [5] are biased in that they include within-
speaker and across-speaker variances. At present none of
the methods include the (linear) modeling error covariance
which will dominate the error descriptions when there is a
large-enough sample size.

2.1. System Description

A portion (about 24 hours) of the SI37 (25 WSJ1 speakers)
training data was selected to build the baseline (speaker in-
dependent) models. A separate portion of SI37 consisting
of 12 WSJ0 speakers was chosen as the adaptation corpus.
Each of these 12 speakers has up to 600 sentences (nearly
80 mins) available for adaptation. The WSJ0 (Nov. 92)
speaker-dependent 5K dev test material was used as the
test corpus and has about 40 sentences from each of the
12 adaptation speakers. Our acoustic modeling is based on
decision-tree clustering of triphones and uses mixture Gaus-
sian distributions to represent leaves in the tree [7, 8]. An
acoustic front-end produces 36 features (based on channel-
normalized mel cepstra) per 10 ms frame and linear dis-
criminant analysis reduces them to K = 24 features/frame.
Decision-tree clustering and a combination of the k{means
and EM algorithms are used to produce the �nal acoustic
models. Experiments using two sets of gender-independent
acoustic models were conducted. System I uses 6000 leaves
in the decision tree with 4 Gaussians to model the PDF for
each leaf. System II uses a slightly smaller set of acoustic
models (nearly 4800 leaves and 4 Gaussians per leaf). The
recognition engine uses a time-synchronous decoder with
Viterbi beam-pruning for the detailed match and a tree-
search for the rapid match. We used a DARPA standard
WSJ 5K vocabulary with word bigrams for the language
model. The performance of the baseline models with no
adaptation data is 15:3% for System I and 16:2% for Sys-
tem II. The error rates are higher than our state of the art
systems primarily because we have used limited amounts
of training data, our acoustic models are small and gender-
independent, and we have used bigram language models.

3. INTERACTION OF SPEAKER

ADAPTATION AND SPEAKER

NORMALIZATION

We �rst address the issue of combining adaptation with
speaker normalization by frequency warping [8] since both

techniques attempt to exploit speaker-speci�c variability in
the data. Recall that [5] does not use speaker normaliza-
tion. The word error rates for System I are given in Ta-
ble 1, speaker normalization appears to yield about 12%
improvement before adaptation, and 5%{7% improvement
after adaptation.



Spkr. Norm. data NO YES
mins. of adapt. data error rate error rate

0:0 15:3% 13:4%
6:5 12:9% 12:1%
13:0 12:1% 11:6%
26:0 12:1% 11:4%
78:0 12:0% 11:4%

Table 1. Combining speaker normalization and

rapid adaptation, experiments on System I using

30 transforms

4. CHOOSING THE COLLECTIONS C

We have investigated two methods for determining the set of
components that share a common transformation. The �rst
is to use linguistic information about phonetic similarities
to cluster individual mixture components at the state level.
The second method is data-driven whereby we cluster com-
ponent means in the baseline models using a k{means type
algorithm. This method tends to cluster components of
highly dissimilar phonemes that happen to look similar (in
a Euclidean-distance sense), but, unlike the �rst method,
large numbers of collections (say > 100) are easy to build.
The word-error rates for System II are given in Table 2, a
hand-selected collection of Nc = 30 transformations seem to
perform as well or slightly better than 30; 50; and 100 col-
lections obtained from the automatic clustering approach.
We hope to combine these ideas by including penalties in
our clustering algorithm so that dissimilar phonemes are
discouraged from sharing a transformation.

mins.
of Nc = 30 Nc = 50 Nc = 100

adapt. (i) (ii) (i) (ii) (ii)
6.5 12:9% 13:1% 13:1% 12:8% 18:3%
13.0 12:2% 13:0% 12:3% 12:3% 12:6%
19.5 12:3% 12:6% 12:2% 12:2% 12:3%
39.0 12:2% 12:5% 12:6% 12:3% 12:2%
78.0 11:9% 12:8% 11:8% 12:3% 12:0%

Table 2. Approaches to choosing collections C using
(i) knowledge-based, and (ii) data-driven strategies

5. ROBUST ADAPTATION

We study the overall issue of robustness in the adaptation
procedure by comparing this procedure to standard MAP
adaptation. Table 3 reports the error rates with and with-
out supervision of the adaptation material. The transcripts,
used in the unsupervised experiments, were produced by us-
ing acoustic models used in System I, and a DARPA stan-
dard WSJ 20K vocabulary with word bigrams for the lan-
guage model. The error rate on the recognized transcript
of the adaptation material is about 21:5%, of which about
4:5% errors are attributable to words not present in the 20K
recognition vocabulary. Table 3 reports results on running
one (T{1) and three (T{3) iterations of transformation-
based adaptation, standard MAP adaptation, and one it-

mins. of supervised
adapt. data T{1 T{3 MAP T{1 + MAP

6:5 12:9% 12:6% 13:7% 12:7%
13:0 12:2% 12:1% 12:1% 11:5%
67:0 12:0% 11:5% 10:4% 10:4%
78:0 11:9% 11:5% 10:4% 10:4%

mins. of unsupervised�

adapt. data T{1 T{3 MAP T{1 + MAP
6:5 13:7% 13:6% 15:1% 13:4%
13:0 13:1% 12:9% 13:7% 12:7%
67:0 12:6% 12:2% 11:9% 11:7%
78:0 12:7% 12:4% 12:0% 11:5%

Table 3. Word error rates for MAP and transforma-

tion approaches in System II (�transcription error

rate � 21:5%)

eration of the transformation-based adaptation followed by
a single pass of MAP adaptation. The lack of supervision
in the adaptation data leads to a loss of about 0:6%{0:8%
accuracy for the transformation-based adaptation, while
the loss is about 1:4%{1:6% for MAP adaptation. It sug-
gests that the transformation approach is less sensitive to
transcription errors. Combining the two methods leads to
slightly higher accuracy, and lower sensitivity to transcrip-
tion errors, when compared to MAP adaptation, especially
for small amounts of data. Also, notice that running 3 iter-
ations of (1) produces a slight improvement over 1 iteration.
Another typical aspect of the adaptation is that the error
rate goes down rapidly for the �rst few minutes of data from
a new speaker with little or no improvement as signi�cantly
more amounts of speech become available. Presumably, the
inability of transformation-based adaptation to e�ectively
utilize large amounts of data stems from modeling error in-
curred in sharing transformations over many mixture com-
ponents. In contrast, MAP adaptation is slower and more
gradual, and leads to better performance if large amounts
of data are provided.

6. TRANSFORMATIONS DURING

TRAINING

The standard SI training process involves (a) probabilis-
tic assignment of each frame of training data to individ-
ual mixture components, and (b) estimation of the out-
put PDF parameters. We now attempt to incorporate
speaker transformations into the model building process
and highlight changes in each of the two steps. The ba-
sic philosophy is as follows. Let xj denote the \mean"
of mixture component j such that when transformed by
Aj [l] (the transformation matrix for speaker l and compo-
nent j), Aj [l]xj is a good representation of observations
from speaker l. We would then choose the means fxjg
such that, for each training speaker l with transformations
fAj [l]g, the transformed means fAj [l]xjg e�ectively model
the acoustic space spanned by training data for speaker l.

We run the Baum-Welch algorithm on data from train-
ing speaker l, using current models for speaker l, to pro-



duce our su�cient statistics (mean vector yj [l], variances�
�2jk[l]

	K
k=1

, and fractional frame counts Nj [l]) for each

mixture component j with mean vector xj . Let A[l] de-
note the transformation for training speaker l and for a set
of components, j 2 C, i.e. yj [l] = A[l]xj + ej , for all j 2 C,

and ej � N (0; I�2=Nj [l]) as in section 2. The MLE of
the model means (for a �xed value of A[l]) is obtained by
solving a weighted least squares problem, and is given by

x̂j =
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Nj [l]A
T [l]A[l]
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The model variances and mixture weights are then updated
using the standard reestimation procedure. An interesting
simpli�cation of (4) is to use

~x
(i)
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which corresponds to applying the inverse transformation to
each training speaker's mean and then applying the stan-
dard reestimation procedure. The mean update in (4) is
similar to that in [1], one di�erence being in the use of the
model variances. This is analogous to the similarity be-
tween our estimate of A in (1) and the estimator derived
in [5] for the transformation matrix. The key issue is the
use of model variances as regression error variances in [1, 5],
while we use scaled identity matrices.
In summary, the iterative procedure used for retraining

is as follows.

� For each training speaker l,

1. apply transformation, A(i)[l], to current models,
M(i), to produce models M(i)[l] for speaker l

2. run Baum-Welch adaptation using models M(i)[l]

on data from speaker l to produce means, y
(i)

j [l],

variances, �
2 (i)

jk , and counts, N
(i)

j [l], for all mixture
components

3. recompute transformation, A(i+1)[l], as in (1), us-

ing M(i) and means y
(i)

j [l]

� Use per-speaker accumulations to recompute (i) the
model means using equations (4) or (5), (ii) the vari-
ances and mixture weights using standard Baum-Welch
updates, and produce new models, M(i+1)

The procedure is initialized (i = 0) with baseline SI mod-
els and identity matrix for each speaker's transformation.
Since each Baum-Welch iteration (after the �rst) is run with
speaker-adapted models, the variances obtained from this
procedure are average within-speaker quantities.
We have performed some preliminary experiments with

the models used in System II using the approximate so-
lution, (5), and the results are shown in Table 4. Two
iterations of the retraining procedure were performed, and
results with one and three iterations during adaptation are
included. Thirty transformations, derived from linguistic
considerations, were used during training and adaptation.

mins. of no retraining two iters. of (5)
adapt. data T{1 T{3 T{1 T{3

19:5 12:4% 12:1% 11:7% 11:3%
26:0 12:4% 11:8% 11:6% 10:9%
39:0 12:2% 12:0% 11:3% 10:8%
52:0 12:0% 11:6% 11:4% 10:8%

Table 4. Word error rates for transformation ap-

proaches in System II with and without retraining

Retraining the models appears to provide nearly 7{10% ex-
tra reduction in the word error rate. In addition, recog-
nition with the retrained models is about 10% faster; we
attribute this to reduced model variances because our esti-
mation procedure produces average within-speaker quanti-
ties.

7. CONCLUSION

The paper reports on several issues involving the use of
transformation-based speaker adaptation for LVCSR sys-
tems. Experiments indicate that speaker normalization by
frequency warping continues to provide additional improve-
ment even after extensive speaker adaptation. We have
shown that transformation-based adaptation compares fa-
vorably with standard MAP adaptation in a number of
adaptation scenarios. The use of speaker transformation in
the training process has been examined. We have also used
some related ideas to improve our conversational speech sys-
tem [7].
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