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ABSTRACT

This paper describes the speaker adaptive training (SAT) approach
for speaker independent (SI) speech recognizers as a method for
joint speaker normalization and estimation of the parameters of
the SI acoustic models. In SAT, speaker characteristics are mod-
eled explicitly as linear transformations of the SI acoustic param-
eters. The effect of inter-speaker variability in the training data
is reduced, leading to parsimonious acoustic models that repre-
sent more accurately the phonetically relevant information of the
speech signal. The proposed training method is applied to the
Wall Street Journal (WSJ) corpus that consists of multiple training
speakers. Experimental results in the context of batch supervised
adaptation demonstrate the effectiveness of the proposed method
in large vocabulary speech recognition tasks and show that signif-
icant reductions in word error rate can be achieved over the com-
mon pooled speaker-independent paradigm.

1. INTRODUCTION

Current speaker independent (SI) continuous speech recognition
(CSR) systems achieve a certain degree of robustness in recogni-
tion performance by estimating their parameters on tens of hours of
speech collected from multiple speakers and in various recording
environments. An inherent difficulty of this approach is that the re-
sulting statistical models have to contend with a wide range of vari-
ation in the speech signal caused not only by phonetically relevant
variation sources but also by inter-speaker variability. The spectral
distributions often exhibit high variance and hence high overlap
among different speech units, which may result in diffused acous-
tic models with reduced discriminatory capabilities. In addition,
a large number of parameters is required for sufficient modeling
accuracy of the speech variability.

Previous efforts to generate acoustic models with reduced vari-
ation due to speaker- or channel-induced factors focused on nor-
malizing the acoustic space prior to estimating the parameters of
the acoustic models. Cepstrum mean subtraction [3] has been the
simplest feature-based normalization method that is used mainly
to counteract channel effects. In [8], a parametric model of vocal
tract length normalization reduces the inter-speaker variability of
the acoustic space by appropriately warping the frequency axis for
each training speaker prior to computing the cepstral coefficients.
In [13], an acoustic normalization technique within the framework
of mixture density HMMs is applied to normalize the training as
well as the test data, and in [11], a maximum likelihood signal bias
is estimated jointly with the parameters of a discrete HMM.

This paper considers theSpeaker Adaptive Training(SAT) al-

gorithm [4] that provides a unified framework for speaker normal-
ization and parameter estimation of HMM-based speech recogniz-
ers. In the SAT method, the individual speaker characteristics are
modeled by linear transformations of the mean parameters of the
acoustic models. Model-based linear transformations offer an ef-
fective way for parameter tying and correlation among the differ-
ent phonetic units. They have been applied successfully to speaker
adaptation methods that try to improve the recognition perfor-
mance of SI systems for a test speaker using little speaker-specific
data [7, 9, 12]. In this work, the speaker transformations are inte-
grated in the training phase [4]. The proposed training method is
based on a maximum likelihood formulation thatjointly estimates
the HMM acoustic parameters and the speaker transformations. By
accounting explicitly for the extraneous speaker-induced variation
and reducing its effect in the training data, the resulting acous-
tic models are truly speaker independent with reduced cross-unit
overlap. An approach similar to SAT has been developed contem-
poraneously in [1].

The SAT algorithm is compared to the common SI training
paradigm within the context of supervised adaptation. The pro-
posed acoustic models are shown to adapt to the test speakers more
efficiently, thus achieving significant overall word error rate reduc-
tions of up to 25% for native speakers of American English and
over 50% reduction in word error rate for non-native speakers of
American English.

2. DESCRIPTION OF SAT ALGORITHM

The SAT formulation is based on an underlying generative pro-
cess of speech that consists of two distinct components. The first
component represents the variation source of phonetically rele-
vant speech events that is considered independent of any particu-
lar speaker. The phonetic variation source is realized by the set
of HMM-based acoustic models�. In Fig. 1, a 3-state HMM
generates the phonetic sequencefxt;xt+1;xt+2g that is speaker-
independent in the sense that it represents a sequence of phonetic
events without speaker-specific characteristics.

The second component of the proposed composite process cap-
tures the speaker specific attributes of speech such as variations
due to different accents and regional dialects and physiologi-
cal characteristics such as pitch, vocal tract length, the general
anatomy of the vocal cavity, age and gender. This second compo-
nent is represented as a filter that transforms the phonetic events to
speech produced by a particular speaker by assigning the speaker-
specific attributes that this filter is capable of modeling. As il-
lustrated in Fig. 1, the sequence of speaker-independent phonetic
events is transformed to the speaker-dependent sequence of obser-



vationsfot;ot+1;ot+2g by passing through the speaker-specific
filter.
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Figure 1. SAT motivated model of speech generation for a par-
ticular speaker

The speaker specific characteristics are modeled by linear-
regression transformations that map the speaker-independent
Gaussian mean vector�j to an estimate of the speaker-dependent

mean�(r)j that pertains to speakerr according to
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whereA(r) is a full matrix and�(r) is an additive vector that com-
prise the speaker specific transformationG(r).

The SAT algorithm begins by partitioning the training data ac-
cording to the variation source whose effects need to be normal-
ized. In this case, the training data are partitioned according to
speaker and a transformation is hypothesized for each speaker
to account for the particular speaker individuality. The optimum
set of HMM parameterse� and the set of speaker transformationseG = (eG(1)
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whereO(r) is the observation sequence contributed by speakerr

andR is the total number of training speakers.
The proposed formulation allows the employment of a wide

range of linear transformations. In this sense, it provides a gen-
eral framework that extends previous work on normalization by
means of cepstrum mean subtraction and maximum likelihood ad-
ditive bias [1, 8, 12]. In the current work, the transformations are
assumed to be “full” regression matrices following the Maximum
Likelihood Linear Regression (MLLR) approach [9]. A simpli-
fied form is obtained if the matrices are assumed to be diagonal or
identity (in the latter case the linear transformation reduces to an
additive bias). However, it has been found [9] that full matrices
give superior performance and hence all experiments reported in
this paper assume the use of full regression matrices.

The SAT parameter estimation is based on the EM algorithm [5,
6] by defining the appropriate auxiliary function. The HMM state

transition probabilities and the mixture component weights fol-
low the standard EM estimation formulae. An iterative optimiza-
tion scheme is employed for the calculation of optimal values for
the set of speaker-dependent transformations, the set of speaker-
independent Gaussian mean vectors and the set of the correspond-
ing Gaussian variances. Optimal values for one such set of pa-
rameters are obtained while the other sets are held constant. The
joint optimum is approximated by iterating over every parameter
set. Typically, one or two iterations of the outlined optimization
scheme are adequate to ensure convergence to an optimal point.

The speaker-dependent transformations are estimated according
to the MLLR approach [9]. The estimation of the means of the
Gaussian densities conditioned on the speaker-specific linear re-
gression transformations is expressed as
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where�k is the covariance matrix of thek-th Gaussian density,
and
(r)k (t) is the posterior probability that the observationo(r)t ,
generated by ther-th speaker, was drawn according to thek-th
Gaussian density. Similarly, the estimation of the covariance ma-
trices of the Gaussian densities is expressed as
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It should be noted that the above development assumes the use
of a single linear transformation for each speaker. In general, the
modeling accuracy is improved by allowing several transforma-
tions. In this case, each Gaussian component is assigned to one
such transformation and the set of Gaussians that share the same
transformation is referred to as aregression class. The SAT esti-
mation algorithm and the extension of SAT to multiple regression
classes is covered in greater detail in [4, 2].

3. EXPERIMENTAL EVALUATION

The development of the SAT method is predicated upon the fact
that acoustic models with reduced cross-unit overlap will adapt to
the test conditions more efficiently than the SI acoustic models,
which are commonly estimated bypooling the training data. Fur-
thermore, the variation that is being modeled by the transformation
in the SAT should be compensated during recognition in order to
match more accurately the test speaker characteristics. Thus the
SAT algorithm is evaluated on the Wall Street Journal (WSJ) cor-
pus, on recognition tests that incorporate speaker adaptation for
the test speakers.

3.1. Baseline SI System
The baseline speaker independent system that is used in the exper-
iments is a gender-dependent, cross-word triphone, mixture Gaus-
sian HMM system. Speech is parameterized using 14 mel-warped



cepstral coefficients, a short-term power coefficient and the first
and second order difference of these parameters to give a 45 di-
mensional feature vector. Decision tree based state clustering pro-
vides a flexible mechanism for tying of the Gaussian densities that
leads to two configurations [10]: (i) thePhonetically Tied Mix-
ture (PTM) system, where all the allophones of each of the 46
phonemes of the system are modeled by a set of 256 Gaussian
densities (a total of 11,776 Gaussian densities), and (ii) theState
Clustered Tied Mixture(SCTM) system, where each of 3,000 clus-
tered states is modeled by a set of 64 Gaussians (a total of 192,000
Gaussian densities). The SAT estimation uses the pooled SI acous-
tic models as initial model seed and MLLR transformations with
dynamically allocated multiple regression classes.

The acoustic training data consist of 62 hours of speech, col-
lected from 284 speakers (male and female) from the SI-284 por-
tion of the WSJ corpus. Experiments were conducted on three
test sets from the development material of the 1994 ARPA CSR
evaluation: the H1D94 test that contains sentences of 20K word
vocabulary spoken by 20 native speakers of American English, the
S0D94 test that contains sentences of 5K word vocabulary spoken
by the same 20 native speakers, and the S3D94 test that contains
sentences of 5K word vocabulary spoken by 11 non-native speak-
ers of American English.

3.2. Adaptation on the Test
Each test speaker provides 40 enrollment sentences (approxi-
mately 3 minutes of speech) for supervised off-line (batch) adapta-
tion. The existing acoustic models are adapted to each test speaker
using the available enrollment speech and MLLR adaptation with
tree-based regression classes similar to [9].

The performance of the SAT acoustic models is compared to
that of the pooled SI models in recognition experiments with and
without adaptation to the test speakers. Table 1 shows the compar-
ative results of the two training methods in combination with the
use of adaptation on the test. When adaptation of the test speakers

% WER
Test Set Training Cond. No Adapt. Adapt.

H1-20K SI paradigm 12.71 11.4
SAT paradigm 12.81 10.40

S0-05K SI paradigm 6.51 5.27
SAT paradigm 6.47 4.82

S3-05K SI paradigm 21.45 12.35
SAT paradigm 24.20 11.73

Table 1. Word Error Rate (% WER) using the PTM configura-
tion for the construction of the pooled-SI and the SAT acoustic
models.

is not applied, the average performance of the two paradigms over
all test speakers is very similar for the two native speakers tests.
This result suggests that the speaker-induced signal variation that
is removed from the acoustic models in the SAT paradigm does not
contain significant phonetic information. In the S3D94 test how-
ever, the training corpus is not representative of the test speakers
and the acoustic models need to be smoother than in the native
speakers tests. The SAT acoustic models are sharper by construc-
tion due to speaker normalization, thus increasing the recognition
word error rate in the S3D94 test. When speaker-adaptation is ap-
plied on the test, the SAT paradigm achieves a significant reduction

of 10% in word error rate over the SI paradigm for the case of na-
tive speakers. In all three test sets the proposed training algorithm
performs uniformly better than the SI paradigm.

3.3. Parsimonious Modeling
The modeling resolution of the speaker independent acoustic mod-
els can be significantly improved at the cost of increasing the pa-
rameters of the HMMs. In order to represent accurately the spec-
tral variation in the speech signal due to multiple training speakers
and recording conditions, a large number of Gaussian densities is
required. The aim of the SAT method is to reduce the extraneous
inter-speaker variability from the training data and generate acous-
tic models that achieve the same modeling efficiency for the rele-
vant phonetic events with fewer parameters than needed to model
the unnormalized training data.

Table 2 shows the recognition results of the two different ap-
proaches to constructing SI acoustic models. The SI SCTM-64

Acoustic Adapt. % WER
Models on Test H1D94 S0D94

Pooled SI PTM-256 � 12.71 6.51
11,776 Gaussians

p
11.44 5.27

Pooled SI SCTM-64 � 11.52 5.77
192,000 Gaussians

p
10.80 4.92

SAT PTM-256 � 12.81 6.47
11,776 Gaussians

p
10.40 4.82

Table 2. Recognition results of PTM-256, SCTM-64 and SAT-
PTM-256. The performance of the three systems when adapta-
tion on the test is applied demonstrates the ability of the SAT
formulation to increase recognition performance and to pro-
vide an efficient and parsimonious representation of the acous-
tic space.

system achieves a lower error rate than the SI PTM-256 system
both without and with adaptation on the test at the cost of a sig-
nificant increase in the number of Gaussian densities. When adap-
tation on the test is employed, which is the condition of interest,
the SAT PTM-256 acoustic models demonstrate the advantage of
speaker normalization, whereby the recognition performance ex-
ceeds that of the SI SCTM-64 system, while maintaining the same
number of Gaussians as the SI PTM-256. When adaptation on the
test is not applied, the performance of the SAT acoustic models
is similar to that of the PTM-256 models as it was also shown in
Table 1.

3.4. Acoustic Models with Reduced Variance
To measure the overlap among the Gaussians of a model, we com-
pute the average covariance of the total set of Gaussian densities
as the weighted average

� =

�
�
2
d

�
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where the relative frequenciesNij are the mixture component
weights. Eq. (5) computes the average covariance of a PTM sys-
tem. Based on this measure, we observe the higher overlap of the
SI distributions relative to the SAT distributions, as indicated in
Fig. 2 by the plot of�2d with respect to all feature dimensions.
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Figure 2. Average per-feature variance of the SI (solid line) and
SAT (dashed line) mixture component densities. The feature
vector consists of the 14 cepstral, their first and second order
time differences, and the log-energy its first and second time
difference.

4. CONCLUSIONS

This paper has described a unified approach to speaker normaliza-
tion and training of speaker independent acoustic models within
the maximum likelihood estimation framework. The method al-
lows the use of general linear transformations for modeling of
speaker characteristics during training. This formulation reduces
the speaker-induced variability that is present in the training data
thereby constructing truly speaker-independent acoustic models.
Experimental results show that this novel training paradigm for-
mulation can lead to a parsimonious representation of the acoustic
space and at the same time achieve significant reductions in word
error rate over the pooled speaker-independent training paradigm.

While the focus of this paper was on the normalization of the
inter-speaker variability in the training data, the technique can also
be used to normalize the effects of recording environment condi-
tions (e.g. ambient noise, microphone, communication channel).
We currently focus on applications of the SAT approach to prob-
lems of normalization of other extraneous variations and on in-
vestigating different parametric forms of transformation within the
SAT framework.
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