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ABSTRACT

This paper examines techniques for speaker normalisation
and adaptation that are applied in training with the aim
of removing some of the variability from the speaker in-
dependent models. Two techniques are examined: vocal
tract normalisation (VTN) which estimates a single \vocal
tract length" parameter for each speaker and then modi�es
the speech parameterisation accordingly and speaker adap-
tive training (SAT) which estimates Gaussian mean and
variance parameters jointly with a speaker speci�c set of
maximum likelihood linear regression (MLLR) based trans-
formations. It is shown that VTN is e�ective for both clean
speech and mismatched conditions and that the further im-
provements obtained by applying MLLR in testing are es-
sentially additive. Detailed results from the use of SAT
show that worthwhile improvements over using MLLR with
standard speaker independent models are obtained.

1. INTRODUCTION

Recently there has been much interest in adaptation tech-
niques for large vocabulary speech recognition. Normally
adaptation is applied to a baseline speaker independent
recognition system that has been trained by pooling all
the training data and modelling the variations found in the
pooled data. For a system that will, in use, be adapted to
a particular speaker (or environment) a better initial sys-
tem can be constructed by taking into account the type
of adaptation that will be applied in testing and training
models accordingly. The resulting models are, at least in
part, normalised to speaker variability. The simplest type
of normalised training, which is now in widespread use, is
to use cepstral mean normalisation (CMN). In its common-
est form CMN removes the mean cepstrum from all vectors
with the cepstral mean calculated separately for each sen-
tence. In this paper two more complex techniques for using
adaptation in training are discussed: vocal tract normalisa-
tion (VTN) and speaker adaptive training (SAT).
VTN [2, 5] normalises the data by using a linear frequency

scaling to try to account for the e�ect of the variations in
vocal tract length on formant frequencies. The vocal tract
length scaling factors are estimated by performing a search
over a set of possible factors and choosing the one which
maximises the data likelihood based on a set of HMMs.
Since VTN only requires a single parameter to be estimated
it can be applied on an utterance by utterance basis during
recognition.
One topic of particular interest is whether the improve-

ments from VTN are complementary to those obtained
by maximum likelihood linear regression (MLLR) [6, 7, 4]

based adaptation. MLLR estimates a set of linear trans-
formations for the Gaussian parameters to maximise the
likelihood of adaptation data. Although MLLR is more
complex than VTN in terms of numbers of parameters, nei-
ther technique can directly account for the same e�ects as
the other.
SAT [1] estimates the parameters of the Gaussian means

and variances assuming that the Gaussian means have
been transformed by MLLR. In training the standard re-
estimation formulae are modi�ed so that the MLLR based
transforms, the Gaussian means and the variances are
jointly estimated in an iterative process.
In this paper an experimental evaluation of VTN and

SAT is performed using the HTK large vocabulary system
which gives state-of-the-art performance in both matched
and mismatched conditions [9] [10]. The next sections de-
scribe our approach to VTN and give experimental results
for using VTN with and without MLLR in both clean and
mismatched environments. A brief description of the SAT
technique is then given and recognition results at di�er-
ent stages of training are presented. It is shown that both
types of adaptation in training provide useful improvements
in performance.

2. VOCAL TRACT NORMALISATION

The primary e�ect of vocal-tract length variation between
speakers is a linear scaling of frequency. The aim of vocal
tract length normalisation is to estimate a length (or fre-
quency) scaling factor for each speaker (or utterance) and
then normalise the speech signal to an average vocal tract
length so the parameterised speech is independent of this
type of inter-speaker variation.
Recent interest in this approach stems from the work at

the 1994 CAIP Summer Workshop on the Switchboard tele-
phone corpus [2]. This work estimated a vocal tract length
factor for each speaker and then resampled the speech wave-
form to e�ect the linear frequency scaling. Other work on
this topic has also concentrated on the Switchboard corpus
[3] or other telephone corpora [5] [8] whereas in this paper
we examine the use of VTN for wide-bandwidth corpora
with both known and unknown microphones.
The main issues to be addressed in an implementation of

VTN are the estimation of the scaling or frequency warp-
ing factors and the implementation of the frequency scaling
in the speech parameterisation. The frequency scaling can
be estimated either by searching a discrete set of possible
scalings [2] or using a more direct approach based on mea-
suring e.g. formant frequencies [3]. For the methods based
on search, the utterance is processed a number of times for
each putative warp frequency and the maximum likelihood



warp factor given a set of speech HMMs is chosen. Fre-
quency scaling can either be implemented by resampling in
the time domain [2], or more e�ciently, for �lter-bank based
front-end processing, by modifying the �lter-bank centre
frequencies for each warp factor [5].
In the work here we have adopted a search approach and

�lter-bank based normalisation. Following [5] 13 vocal-tract
length scaling factors are considered in steps of 0.02 from
0.88 to 1.12 and the speech data coded for each of these dif-
ferent scalings by adjusting the �lter-bank centre frequen-
cies. In such an implementation care must be taken to deal
with the highest frequency channel when the centre frequen-
cies are increased beyond the range of the usual analysis.
Here, in such cases we have estimated the highest channel
energy by interpolating with the neighbouring channels and
in extreme cases (length warpings of 0.88 or below) copied
the highest channel energy from the next highest frequency
bin.
In model training a single warp frequency is selected for

each speaker by examining the likelihood of the warped data
at each scaling using a set of HMMs corresponding to the
known transcriptions. It may be bene�cial to iteratively
estimate the training data frequency warpings since the ini-
tial selection of scalings is based on models trained from
unwarped data.
In recognition ideally a full recognition pass with the data

at each scaling would be performed and the scaling that
gave the maximum likelihood output chosen. However this
procedure is computationally very expensive so instead the
likelihood of the data using the transcription from a �rst
pass decoding with unwarped data is used to select the fre-
quency scaling. The selected scaling factor is then used and
the data re-recognised (possibly using lattices from the �rst
pass) to generate the �nal recognition output.

3. VTN EXPERIMENTS

There were two main motivations of these experiments: to
investigate the performance of VTN on large vocabulary
non-telephone data and to establish whether gains from
VTN and subsequent MLLR adaptation are additive.
The VTN experiments employ the HTK LVCSR sys-

tem [9] which uses state-clustered, cross-word triphone mix-
ture Gaussian HMMs. The con�guration used here has an
MFCC front-end supplemented with 1st and 2nd di�eren-
tials and gender independent models. Two di�erent sets of
experiments were performed: the �rst used just the WSJ0
SI-84 training data (14 hours of speech) while the second
set used the full WSJ0+1 SI-284 training set (66 hours).

3.1. SI-84 Models

The experiments with SI-84 models used a model set con-
taining 3992 clustered speech states and 8 Gaussian compo-
nents per state. The experiments used two test data sets:
the US SQALE evaluation data and the 1994 ARPA S5
data. The SQALE data consists of 200 WSJ utterances
from 20 speakers recorded in clean conditions. The ARPA
November 1993 20k trigram language model and word list
were used with the SQALE data. The S5 data is used to
test performance for non-matched microphones and consists
of 200 sentences from 20 speakers. For each speaker one of
10 alternate microphones was used. The A-weighted SNR
was typically 20dB. For S5 the standard ARPA 5k trigram
was used.
The results of the experiments on both the S5 and

SQALE test-sets are shown in Table 1. The �rst line of

Test Data Training Data % Word Error Rate
Normalised Normalised S5 SQALE

N N 13.9 13.6
Y N 13.3 12.7
Y 1 Iteration 12.0 12.1
Y 2 Iterations 11.8 12.2

Table 1. VTN results on the S5 and SQALE data

the table gives the non-normalised training and test base-
line system results; then the result of normalising the test
data only and �nally normalising both training and test
with either one or two iterations of normalisation. The Ta-
ble shows that VTN gives a 15% reduction in word error
rate on S5 and 10% for the SQALE data. We have pre-
viously found on the SQALE data that the use of gender
dependent modelling gives just a 2% improvement in error
rate so VTN is clearly much more e�ective. It was also
noted that all the normalisation factors for S5 tend to have
a compressive frequency scaling showing that some environ-
mental normalisation is also occurring for this data.
We next investigated the e�ect of combining VTN and

MLLR for the S5 and SQALE data. A model set trained
using normalised utterances was transformed by MLLR
to maximise the likelihood of the warped test utterances.
MLLR was used in transcription mode on the test data:
the test data is used as the adaptation data with the recog-
nised output as the transcription; the model parameters are
transformed and the data is then re-recognised. Two such
passes of MLLR were performed and each MLLR pass up-
dates the means using block-diagonal transforms and the
variances with a diagonal transform (plus o�set). A global
transformation was used in a �rst MLLR pass and then, in
the second pass, multiple classes determined by a regression
class tree [7] were used. For both passes a separate silence
class was used.

Task Speaker % Word Error Rate
Normalised No MLLR Global 2nd Pass

S5 | 13.9 9.0 8.4
S5 VTN 11.8 8.4 7.5

SQALE | 13.6 12.1 11.9
SQALE VTN 12.2 10.7 10.6

Table 2. VTN with MLLR results on S5 and
SQALE data

Table 2 shows the results of applying MLLR to the base-
line and the best VTN system on both data sets. On the
clean SQALE data, the gains from both VTN and MLLR
are clearly additive with a 10-12% error reduction due to
VTN and 13% due to MLLR. We found this to be a some-
what surprising but very encouraging result. For the S5
data, MLLR provides a 40% reduction in error rate since
both environmental compensation and speaker adaptation
are being performed whereas VTN alone gives a 15% reduc-
tion in error rate and a further 11% when combined with
MLLR, showing that the gains are still largely additive.

3.2. SI-284 Models

Most speaker adaptation techniques become relatively less
e�ective when applied to more sophisticated initial models
trained on larger training corpora. It was expected that
this would be the case for VTN and hence the above exper-



iments were repeated using HMMs trained on the SI-284
(WSJ0+1) training data.
The models used were gender independent cross word

state clustered triphones with 6399 speech states and 12
mixture components per state (the HMM-1 set of [9]). In
order to reduce time in developing a VTN compensated
model set, a single warping factor was estimated for each
speaker by averaging the warping factors for a subset of 20
utterances from each speaker.
Recognition used a 65k trigram language model and op-

erated in lattice rescoring mode. The test data consisted of
the 1994 ARPA H1 development and evaluation data (un-
limited vocabulary data). Each of these data sets contains
approximately 15 sentences from each of 20 speakers.

Test Data Training Data % Word Error Rate
Normalised Normalised H1 Dev H1 Eval

N N 9.35 9.07
Y N 8.92 8.61
Y Y 8.63 8.43

Table 3. VTN results on the H1 Dev and Eval tasks.

The results for Table 3 shows VTN performance on these
tasks. The use of test-only VTN reduces the error rate by
5%, while using normalised data for both training and test
reduces the error rate by 7-8% i.e. a little less than the
10% reduction in error observed earlier on clean data using
the SI-84 models. We conclude that although VTN is less
e�ective as more training material is available, it is still
bene�cial to systems trained on large quantities of data.

Task Speaker % Word Error Rate
Normalised No MLLR Global 2nd Pass

H1 Dev | 9.35 8.45 8.23
H1 Dev VTN 8.63 7.81 7.70

H1 Eval | 9.07 8.11 7.83
H1 Eval VTN 8.43 7.47 7.32

Table 4. VTN with MLLR results on H1 Dev and
Eval data.

In Table 4, the e�ects of MLLR on the baseline and VTN
SI-284 model set is shown. MLLR has been used as de-
scribed earlier: an initial global pass is followed by a mul-
tiple class transformation using transcription mode adap-
tation on the test data. On the H1 Dev set an 8% error
rate reduction due to VTN alone is observed and 12% due
to MLLR alone, with an 18% improvement when both are
used. Similarly on H1 Eval, a gain of 7% from VTN alone
and 14% using MLLR alone compares to a combined gain of
19%. Therefore although the improvements due to VTN are
a little smaller with a larger model set, as with the SQALE
task described earlier using SI-84 models, the improvements
due to MLLR and VTN again appear to be additive.

4. SPEAKER ADAPTIVE TRAINING

MLLR adaptation is normally used with a standard speaker
independent model set created by simply pooling all the
training data rather than with models speci�cally created
for adaptation. However, if it is known that the model pa-
rameters will be transformed using speaker-speci�c MLLR
a more appropriate set of initial mean and variance param-
eters can be found. This is the basis of speaker adaptive

training (SAT) [1]. The basic idea is that the inter-speaker
variability that can be accounted for by speaker-speci�c
MLLR is in e�ect removed when estimating the mean and
variance parameters. It may be expected that a smaller
number of Gaussians is needed than the standard SI train-
ing approach to model the data with the same detail.
For SAT training it is necessary to jointly estimate a set

of transformation matrices for each of the training speakers
(which depends on the mean and variances of the models)
and values for the Gaussian means and variances (which
depend on the transformations). Following [1], an iterative
approach is adopted in which one of these parameter sets
(transformations, means, variances) is estimated at each
stage and maximum likelihood re-estimation used individ-
ually for each of the parameter sets assuming the other pa-
rameters are �xed. Once all the parameters have been up-
dated in this way, further complete iterations are possible.
The transformation matrices are estimated using the

standard MLLR equations; the model means are updated
given that the means are transformed by speaker-dependent
MLLR transformations; and �nally the variances are found
given the means and the transformations. The formula for
the mean update of a particular Gaussian m is given by
(assuming a single training utterance for each of S speakers
for notional convenience) [1]
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where Lsm(�) is the a posteriori probability of Gaussian m at
time � for speaker s; Ts is the length of the utterance from
speaker s; os(�) is an observation at time � ; As is a square
MLLR transformation matrix for speaker s and Gaussian
m and bs is the corresponding MLLR o�set vector.
The variance update is given by [1]
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It should be noted that the mean update in particu-
lar is considerably more computationally intensive than
standard maximum likelihood training, and in particular
a straightforward implementation requires signi�cantly in-
creased storage for the \denominator" of the mean update.
Experiments using SAT training with this 3-step opti-

misation of transformations means and variances were re-
ported in [1] for a phonetically tied mixture HMM system
with a relatively small number of Gaussians.

5. SAT EXPERIMENTS

The aim of these experiments was to evaluate the SAT tech-
nique using a state-clustered Gaussian mixture system and
to discover the contribution of training the mean and vari-
ance parameters using SAT.
The HMM system used an MFCC front-end and was

trained using the SI-284 WSJ0+1 data. The system was ini-
tialised using a set of standard speaker independent models.



These were gender independent cross word state clustered
triphones with 6399 speech states and 12 mixture compo-
nents per state. This is the same as the baseline system
described in the VTN section for experiments on the ARPA
1994 H1 development and evaluation tasks [9]. These test
sets were again used for SAT experiments using a 65k tri-
gram language model in lattice rescoring mode.
In training, block-diagonal transformations were used

and were trained from all the training data for that speaker
in the SI-284 set. A regression-class tree was used to de�ne
the sets of transformations trained and thresholds were set
in transform creation so as to ensure that a similar num-
ber of transformations were used in both the training and
test phases. The model parameters were trained for 2 com-
plete iterations of the 3-step optimisation starting from the
baseline standard speaker independent system. For each
iteration �rst training transforms were estimated (a); then
the mean parameters were updated (am) and �nally the
variances (amv).
In testing, the 40 standard adaptation sentences were

used for each speaker in static supervised adaptation mode
to train a set of block-diagonal mean transformations us-
ing a regression class tree. To obtain accurate state-frame
alignments for transformation estimation the test adapta-
tion matrices were estimated for each stage of model train-
ing in turn.
It should be noted that the experiments in this section

are not directly comparable to the VTN experiments since
di�erent adaptation data (& adaptation mode) is used and
also MLLR is used to update the mean parameters only.

Model Set Test MLLR % Word Error Rate
H1 Dev H1 Eval

Baseline N 9.35 9.07
Baseline Y 8.03 8.13
am Y 7.90 7.85
amv Y 7.85 7.55

amvam Y 7.69 7.43
amvamv Y 7.73 7.37

Table 5. SAT results on the 1994 H1 Dev and Eval
data

Table 5 shows the baseline error rates and the perfor-
mance at each stage of SAT training for both the H1 devel-
opment and H1 evaluation data. Standard MLLR reduces
the error rate by an average of 12%, and SAT based training
reduces the error rate by a further 6% with the second iter-
ation of SAT training (amvam and amvamv sets) providing
about 1/3 of this reduction. It can also be seen that the
adjustment of both the means and the variances contributes
to the overall improvement obtained.
In the experiments here SAT has been found to give

worthwhile improvements in word error rates and the result-
ing models certainly have a more speaker dependent char-
acter than standard mean-only MLLR-adapted models. In
particular due to the reduced variances of the SAT trained
models recognition speed is noticeably improved since prun-
ing in decoding is more e�ective.
Although all the SAT experiments here have used the

same number of parameters as the standard speaker inde-
pendent system, it would be possible to train a system com-
pletely using the SAT approach so that the �nal system has
a reduced number of parameters. Such a system, combined
with static supervised adaptation, could be a particularly

e�ective way of training compact speaker-dependent models
from a limited amount of enrolment data.

6. CONCLUSIONS

This paper has investigated the use of both vocal tract nor-
malisation and speaker adaptive training techniques. Both
methods are shown to be e�ective since they are able to
e�ectively reduce the variability that needs to be modelled.
One interesting result is that the use of VTN is shown to be
essentially additive to gains from standard MLLR adapta-
tion. Further work may include examining these two tech-
niques in combination.
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