
MODEL TRANSFORMATION FOR ROBUST SPEAKER RECOGNITION
FROM TELEPHONE DATA

Fran�coise Beaufays and Mitch Weintraub

Speech Technology and Research Laboratory
SRI International, Menlo Park, CA.
e-mail: francois,mw@speech.sri.com

ABSTRACT

In the context of automatic speaker recognition, we pro-
pose a model transformation technique that renders speaker
models more robust to acoustic mismatches and to data
scarcity by appropriately increasing their variances. We
use a stereo database containing speech recorded simulta-
neously under di�erent acoustic conditions to derive a syn-
thetic variance distribution. This distribution is then used
to modify the variances of other speaker models from other
telephone databases.
The technique is illustrated with experiments conducted

on a locally collected database and on the NIST'95 and '96
subsets of the Switchboard Corpus.

1. INTRODUCTION

Many applications of speaker identi�cation systems
(speaker-ID for short) assume that the users access the sys-
tem remotely. Typically, the channel involved in the com-
munication is that of the telephone. Because the handset
and the line can vary from call to call, there is often an
acoustic mismatch between the data collected to train the
speaker models and the speech produced by the speakers
at run-time or during testing. Such mismatches are known
to severely a�ect the performance of the speaker-ID system
[1]. In addition, the typically limited amount of training
data further accentuates the problem.
The issue of acoustic mismatches can be tackeled at dif-

ferent levels: speech features can be extracted that are
less sensitive to channel e�ects than the traditional cep-
strum (see e.g., [2, 13]) the e�ect of mismatches can be
reduced via cepstral mean/bias removal (see e.g., [3-6]),
the speaker models can be transformed to compensate for
the mismatches, rescoring techniques can be used to nor-
malize the speaker scores and reduce the channel e�ects
(see e.g., [7]), etc. This paper concentrates on the model
transformation approach.
The method we propose is a channel compensation

method, as opposed to a channel adaptation one. It aims
at making the speaker models more robust to channel mis-
matches rather than adapting them to the test environ-
ment. Adaptation algorithms used in speech recognition
(e.g., [8-11]) are not well-suited to speaker recognition: if
the speaker models are adapted with the test data, they all
converge towards the same model and the speaker discrim-
inability is lost.
In this work, we don't assume any a priori knowledge

about the communication channel. If such knowledge is
available (for example if we know that the handset has
an electret or a carbon-button), it can be used to map
the speaker models from one environment to another (e.g.,

using POF �lters [12]) or to re�ne the variance transforma-
tion described here by making it telephone-dependent; but
we show that even without such information a signi�cant
performance gain can be achieved.
The model transformation we describe uses an auxiliary

database containing stereo recordings to compute what we
refer to as a synthetic variance distribution, that is, a dis-
tribution of variances constructed arti�cially by comparing
clusters of data points recorded simultaneously in di�erent
acoustic environments, and with a large amount of training
data. This distribution is then used as a \target" to which
the variances of other speaker models can be compared, and
based on which they can be modi�ed.

2. BASELINE SYSTEM

The front-end used in our baseline system extracts, from
each frame of speech, a 17-dimensional �lterbank-based cep-
strum. The cepstra of the training data are used to build
a set of Gaussian mixture models (GMM) trained with the
EM algorithm. During testing, unknown speakers are rec-
ognized by a classi�er that determines which trained model
maximizes the log-likelihood of the speaker's test utter-
ances. Cepstral mean substraction is applied to both train-
ing and testing utterances.

3. DEVELOPMENT DATABASE

Deriving a synthetic variance distribution requires a stereo
database. Ideally, this should contain telephone speech
recorded simultaneously through several telephones. Be-
cause this type of data is hard to collect, we used instead
the Stero-ATIS database. This database, collected at SRI,
consists of 10 series of 30 4-second long sentences that are
recorded simultaneously with a close-talking Sennheiser mi-
crophone, and at the other end of one of 10 telephone units
(by \telephone unit" we mean the combination of a handset
and a line). The database contains the voices of 13 male
speakers reading 
ight-related sentences.

4. COMPENSATION FOR ACOUSTIC
MISMATCHES

The most severe channel mismatch situations occur when
the training data is collected from only a few telephone
units. If, instead, many telephone units are represented in
the training data, chances are that the classi�er will �nd
a subset of the speaker model that �ts well the test data.
The variance transformation that we propose increases the
acoustic coverage of the speaker models to make them more
robust to unseen data.
This is illustrated conceptually in Fig. 1 for a two-

dimensional feature space. If G1 is a cluster of features



collected from one telephone unit, the same speech frames
transmitted by another unit might look like G2 or G3 or
G4. Since our speaker-ID system uses GMMs, each cluster
in Fig. 1 can be thought of as one Gaussian of one speaker
model. The exact mean and variance changes from G1 to
G2, G3, or G4 is generally unknown at the time of testing.
Instead of trying to estimate these changes and use them
in an adaptation-like algorithm (i.e., replacing G1 with an
estimate of G2, G3, or G4), we compute the variance of a
cluster G that \covers" the possible regions where we may
expect the data to lie when transmitted by di�erent tele-
phone units. The cluster G has the same mean as G1, but
its variance is larger because it has to compensate for the
mean shifts occurred between G1 and G2, G3, G4. The
variances of the G clusters of all the speaker models form
what we refer to as the synthetic variance distribution.
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Figure 1. Clusters of data points in a two-
dimensional feature space.

5. EFFECTS OF TRAINING DATA SCARCITY

In mismatched as in matched conditions, speaker-ID per-
formance strongly depends on the amount of training data.
More training data, even if it is mismatched with the test
data, gives better performance and allows larger models to
be built. This is illustrated in Fig. 2 where four matched
and mismatched systems trained with increasing amounts
of data are compared. The experiment was conducted on
the Stereo-ATIS database described earlier. The speaker
models were built with Sennheiser-recorded data. The test
data consisted either of Sennheiser sentences (lower four
curves), or of their telephone stereo recordings (upper four
curves). The GMM sizes varied from 64 to 256 Gaussians.
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Figure 2. Speaker-ID error-rate as a function of the
amount of training data. `...' = 64 G, '-.-.' = 128
G, '- - ' = 256 G, '|' = 512 G

The amount of data used to build a GMM and its number
of Gaussians are directly re
ected by the variance distribu-
tion of the Gaussians. For illustrative purposes, we plotted
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Figure 3. Average variance along c2 vs. the amount
of training data, for four GMMs. `...' = 64 G, '-.-.'
= 128 G, '- - ' = 256 G, '|' = 512 G

in Fig. 3 the average variance along cepstral coe�cient c2 of
the Gaussians built in the previous experiment. The �gure
shows that (1) for a given amount of data, the Gaussians
of large GMMs have lower variances (each Gaussian models
fewer data points); (2) for a given model size, the average
variance increases with the amount of training data. This
can be attributed to the fact that the EM algorithm tends
to minimize the Gaussian variances, and that it can achieve
this better when there are fewer data points per Gaussian.
These last observations suggest that increasing the vari-

ances of a GMM can also be useful in compensating for the
lack of training data, and in allowing larger models to be
built. We take this factor into account by constructing the
synthetic variance distribution with a large amount of data.

6. SYNTHETIC VARIANCE DISTRIBUTION

The synthetic variance distribution is computed as illus-
trated in Fig. 1, using a stereo database. For sake of clar-
ity, we will assume that this database is Stereo-ATIS. The
Sennheiser utterances of Stereo-ATIS will be used to build
the G1 clusters, and their telephone stereo recordings will
be used to estimate the variances of the G clusters. The
algorithm is summarized below.

1. Use a few Sennheiser sentences from each speaker to
build a set of GMMs that will serve as frame classi�ers.

2. For each speaker in the database:

(a) Label each frame of the speaker's remaining
Sennheiser data with the index of the Gaussian
that maximizes its log-likelihood, that is, classify
the Sennheiser frames using the speaker's GMM.

(b) For each Gaussian in the GMM (for each cluster):

i. Compute the mean, �S, and the variance, �2S,
of the Sennheiser frames clustered by this Gaus-
sian.

ii. Compute the variance, �2T , of the stereo record-
ings of these frames. These stereo recordings
comprise frames recorded on all 10 telephone
units. To compensate for the shift in the means,
the variance �

2

T is computed wrt. the mean �S

of the Sennheiser frames instead of being com-
puted wrt. its own mean, �T .

The variances, �2T , form the desired synthetic variance
distribution.



We built a synthetic variance distribution for our base-
line system. We kept 30 sentences per speaker to build
a set of 64-Gaussian GMM classi�ers, and used the other
270 sentences per speaker to derive the synthetic variance
distribution. Figure 4 displays pairs of variances (�2S,�

2

T )
computed along two di�erent cepstral coe�cients (the data
points in each plot were normalized to have zero-mean and
unit-variance). The �gure shows that (1) as we expected,
most of the synthetic telephone variances are larger than
the corresponding Sennheiser variances (i.e., most data
points are above the diagonal), and (2) the variances along
c17 show more dispersion than the variances along c1. This
is due to the fact that higher-order cepstral coe�cients are
more sensitive to channel e�ects.
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Figure 4. Pairs of normalized variances, �2T vs. �
2

S,
along c1 (left) and c17 (right).

In �rst approximation, the points in each plot could be
�tted with a straight line, thereby de�ning an a�ne trans-
formation from the Sennheiser to the synthetic telephone
variance distributions. Assuming that the acoustic coverage
of Sennheiser data is similar to that of data collected from
a telephone unit under similar conditions (same amount of
data), we could apply this transformation to speaker mod-
els trained for other telephone databases. This approach
is further described in [13]. It gave good results but was
outperformed by the variance transformation described in
the next section.

7. SPEAKER MODEL TRANSFORMATION

This transformation can be seen as an extension of the a�ne
transformation mentioned previously. It translates the vari-
ances of the speaker models so as to make the mean of their
distribution equal to the mean of the synthetic variance
distribution. Mathematically, the transformation can be
described as:

�
2

tfmed;p;j(i)
4

= �
2

p;j(i) + ti;

ti = < �
2

T;q;l(i) > � < �
2

p;j(i) >;

where �2p;j(i) denotes the variance of the j
th Gaussian of the

p
th speaker along the ith cepstral coe�cient, < �

2

p;j(i) > de-
notes the average of the variances along ci of all the Gaus-
sians of the speaker models to transform, and < �

2

T;q;l(i) >
represents the average along ci of the variances of the tele-
phone synthetic distribution.
For a given front-end and for a given feature vector, the

synthetic variance distribution is �xed. We therefore refer
to this transformation as the translation to a �xed target
of the model variances. This scheme allows speaker models
that have small variances because they were trained with
little data and/or with little acoustic variety are compen-
sated more (ti larger) than models that already have a good
acoustic coverage.

For completeness, it should be noted that because the
synthetic distribution is derived to compensate for the worst
case mismatch (training data from a single acoustic environ-
ment), and because it is constructed with a lot of training
data, it almost always has larger means than the distribu-
tions of variances computed under less favorable conditions.
However, as a measure of security, we check that ti is posi-
tive before applying it to the model variances. If ti is nega-
tive, we set it to zero. We saw this happening only once in
our experiments, for two higher-order cepstral coe�cients.

8. EXPERIMENTS

8.1. Experiments on the SRI-digits Database

A �rst series of experiments was conducted on SRI-digits,
a database of 10 male speakers reading series of digits over
di�erent telephone units. Six sets of GMMs were built with
speech collected from six di�erent telephone units. Each
GMM had 64 Gaussians and was trained with one minute of
speech. The GMMs were tested with 4-second long speech
segments collected from 10 other telephone units. Three
scenarios were considered: \no variance transformation",
\a�ne transformation", and \translation to a �xed target".
The speaker-ID error-rates were measured for the six sys-
tems and averaged. The experiment was repeated with 128-
and 256-Gaussian GMMs. Table 1 summarizes the results.

64 G 128 G 256 G

No transformation 41:70 42:73 44:17
A�ne transformation 37:62 37:49 37:47
Translation to a �xed target 36:36 35:79 36:74

Table 1. Speaker-ID error-rate on SRI-digits, 1-line
1-minute training, 4-second testing.

The table shows that (1) the variance transformations
made the models less sensitive to the number of Gaussians,
but they favored larger models, and (2) the a�ne transfor-
mation gave a 10% relative improvement while the transla-
tion to a �xed target gave a 14% improvement.
The experiments were repeated with GMMs trained with

data collected from two telephone units. Results are sum-
marized in Table 2. Because of the larger amount of training
data and because of the reduced mismatch, the error-rates
are lower than in the previous experiment. The overall con-
clusions regarding the variance transformation remain the
same. The improvements in error-rate are roughly 14% for
both transformations.

64 G 128 G 256 G

No transformation 28:63 28:73 35:72
A�ne transformation 26:33 25:43 24:74
Translation to a �xed target 25:52 24:93 24:66

Table 2. Speaker-ID error-rate on SRI-digits, 2-line
2-minute training, 4-second testing.

8.2. Experiments on the Switchboard Corpus

So far, we considered only cepstrum-based systems. In
[13], we propose a new speaker-ID feature that measures
the slope of the �lterbank used to derive the cepstrum.
Cepstrum-based and �lterbank slope-based GMMs can be
combined by averaging the log-likelihoods of the test utter-
ances wrt. the two GMMs (see [13] for more details).
Two sets of 64-Gaussian GMMs were built for the 30-

second training, 5-second testing close-set task of the
NIST'95 Evaluation (26-speaker subset of Switchboard).



One GMM was based on a 17-dimensional cepstrum, the
other used a 28-dimensional �lterbank slope feature [13].
Synthetic variance distributions were computed for each
front-end, and �xed-target translations were applied to
the corresponding GMMs. Table 3 summarizes the error-
rates of the di�erent systems. The variance transformation
brought a 7% relative error-rate improvement to each clas-
si�er and improved the combination of the two classi�ers
by 11%.

cepstrum var. ftbk var. error-rate
transf. slope transf. in %

p
24:89p
24:15p p
23:08p p
22:44p p
23:40p p p
22:33p p p
22:54p p p p
20:83

Table 3. Close-set speaker-ID error-rates on the
NIST'95 Evaluations subset of Switchboard (30-
second training, 5-second testing)

A similar experiment was performed on hub \s1b" of the
NIST'96 Evaluations. The training data consisted of one
two-minute call. The test data consisted of one 10-second
call. Roughly 50% of the handsets used for testing were
identical to those used for training. This was an open-set
speaker recognition task, with 21 male target speakers, and
400 imposter speakers. The �gure of interest was the prob-
ability of false alarm at 10% miss (see [7] for more details
about the open-set baseline system). Table 4 summarizes
our results with and without variance transformation.

cepstrum var. ftbk var. % False alarm
transf. slope transf. @ 10% miss

p
21:7p
19:8p p
20:3p p
20:1p p
17:6p p p
19:2p p p
10:7p p p p
12:7

Table 4. % false alarm at 10% miss on the NIST'96
Evaluations subset of Switchboard (2-minute train-
ing, 10-second testing)

Table 4 shows that the variance transformation im-
proved the cepstrum-based GMM performance by 9%. The
�lterbank-slope GMM was practically una�ected by the
variance transformation. The system formed by combin-
ing both GMMs improved by 28% when variance transfor-
mation was applied to both features, by 40% when only
the cepstrum-based GMM was transformed, but its per-
formance decreased when only the �lterbank slope-based
GMM was transformed. We are currently investigating the
reasons of this last result.

9. CONCLUSION

We have discussed the issue of speaker recognition over the
telephone. We have proposed a variance transformation

technique that renders Gaussian mixture models more ro-
bust to acoustic mismatches and to training with limited
amounts of data. We have shown through several examples
that the method improved signi�cantly the speaker recogni-
tion error-rate of cepstrum-based systems. We are currently
investigating the behavior of the variance transformation on
the �lterbank slope-based GMMs.
Several extensions of this technique can be investigated:

(1) combining the transformations with handset detectors
to make the transformations telephone-dependent, (2) make
the transformations speaker-speci�c, (3) normalize the vari-
ance translation to eliminate di�erences between Stereo-
ATIS and the application database that are due to factors
other than the training conditions and the amount of train-
ing data, e.g., the type of speech (read vs. spontaneous,
constrained vs. unconstrained, etc.).
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