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ABSTRACT

This paper studies the e�ects of handset distortion on tele-
phone-based speaker recognition performance, resulting in
the following observations: (1) the major factor in speaker
recognition errors is whether the handset type (e.g., electret,
carbon) is di�erent across training and testing, not whether
the telephone lines are mismatched, (2) the distribution of
speaker recognition scores for true speakers is bimodal, with
one mode dominated by matched handset tests and the
other by mismatched handsets, (3) cohort-based normaliza-
tion methods derive much of their performance gains from
implicitly selecting cohorts trained with the same handset
type as the claimant, and (4) utilizing a handset-dependent
background model which is matched to the handset type of
the claimant's training data sharpens and separates the true
and false speaker score distributions. Results on the 1996
NIST Speaker Recognition Evaluation corpus show that us-
ing handset-matched background models reduces false ac-
ceptances (at a 10% miss rate) by more than 60% over pre-
viously reported (handset-independent) approaches.

1. INTRODUCTION

In telephone-based speaker recognition, it has been widely
recognized that classi�cation performance degrades because
of corruptions of the signal in the transmission channel.
Recently, however, research has been conducted suggest-
ing that a signi�cant part of the degradation might be at-
tributed to a mismatch in handset types between training
and testing (e.g., training on carbon button handsets only,
but testing on electrets) [1]. Several well-established com-
pensation techniques, including cepstral mean subtraction
and delta coe�cients as well as the newer RASTA �lter-
ing [2], have been applied to speaker recognition to com-
pensate for channel and handset mismatches. While these
methods can e�ectively compensate for linear channel dis-
tortions, they are generally less e�ective in treating the
handset mismatch problem.

We present a new compensation method that signi�-
cantly reduces the adverse e�ects of handset mismatch. The
method compensates for handset e�ects by utilizing a new
likelihood ratio scoring technique. Rather than compar-
ing scores of a speaker whose identity is claimed (claimant)
to scores of a set of \cohort" speakers, the method com-
pares claimant scores with a speaker-independent \compos-
ite" model similar to the large random pooled model used

in [3]. However, instead of using random speakers to build
the composite model, we explicitly focus on the handset
mismatch problem by training separate handset-dependent
background models (speaker-independent, balanced gen-
der). In this way, biases resulting from handset mismatches
between the claimant and the normalizing impostor model
are reduced. As compared to a state-of-the-art Gaussian
mixture model (GMM) based text-independent speaker ver-
i�cation system using random pooled background speaker
normalization without attention to handset types (baseline
system), the new approach reduces the false alarm rate (at
a 10% miss rate) by more than 60%.

2. BASELINE SYSTEM

The speaker recognition system utilizes EM-trained (expec-
tation maximization) GMMs to represent the acoustic pa-
rameter distribution of each claimant speaker,
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where pi
k and bi

k are the mixture weight and the Gaussian
density for the i-th mixture out of M for speaker k [1].
The acoustic parameters are 17th order mel-cepstra, with

the zeroth-order term removed. The mel-cepstra are com-
puted from a sliding 25 ms frame of speech, with a fram-
erate of 10 ms. Cepstral mean subtraction is used in all
experiments reported in this paper.
The average log-likelihood of a claimant speaker given an

utterance X = f ~x1 : : : ~xT g is computed as
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For the baseline (open-set) system, a likelihood ratio de-
tector is used that normalizes the score of the claimant
speaker by the score of a single handset-independent com-
posite model of all other impostor speakers. This method
was described as \random pooled" in [3]. In the log-domain,
the ratio can be expressed as a di�erence of terms,

�(X j k) = L(X j �k)� L(X j �k) (3)

where �k denotes the composite impostor model. The
term composite refers to the fact that aspects of many per-
sons' voices (90 speakers were used in the research reported



here) are combined into one model. This contrasts with
cohort methods, where separate speaker-dependent models
are used. The composite models are simple to implement,
and have been shown to perform comparably with cohort-
based methods [3]. For the experiments reported in this
paper, we used 1280 Gaussian mixtures for the composite
model.

3. EXPERIMENTAL DATABASE

The database we used in our experiments is the March 1996
NIST Speaker Recognition Evaluation. The database is a
subset of Switchboard, a conversational-style corpus of long
distance telephone calls. The subset consists of 40 claimant
speakers (21 male and 19 female) and approximately 400
impostor speakers (200 male, 200 female). There are three
training conditions for each claimant speaker: \one-session"
(all training data from one phone call, i.e., one handset),
\one-handset" (training data from two phone calls, but with
one handset), and \two-handset" (training data from two
di�erent handsets). Each training condition uses 2 minutes
of training speech from the claimant speaker. There are
two testing conditions: \matched" and \mismatched" tele-
phone numbers, referring to whether or not the telephone
used during testing was the same as that used in training.
In addition, there are three test utterance durations: 30,
10, and 3 seconds. The results of this paper are focused
on the most di�cult portion of the database: the \one-
session" condition with males only for both the claimant
and impostor speakers. Both test conditions over all three
test durations are examined.

4. HANDSET-DEPENDENT COMPOSITES

To motivate the use of our new handset compensation tech-
nique, we begin with an analysis of the baseline system. Fig-
ure 2 shows histograms of scores for true and false speaker
veri�cation trials using the evaluation database described
above. However, the test data were separated into two
handset types: carbon and electret. In this way, we gener-
ated three plots: the top plot shows the score histograms
for all of the data (all handsets), the middle �gure plots the
portion of scores from matched handset types (e.g., electret
in both training and testing), and the bottom �gure plots
the scores from mismatched handset types (e.g., electret
in training, carbon in testing). As can be seen, the true
and false speakers are much more di�cult to distinguish in
the mismatched case. In addition, the plots show that the
true speaker scores are largely bimodal, with the rightmost
mode dominated by the matched handset type scores, and
the leftmost mode dominated the mismatched scores. As
a result, the overall true speaker distribution (top plot) is
spread out, overlapping the false speaker distribution which
results in a high number of false rejects and false accepts.
To reduce the number of errors in the veri�cation sys-

tem, we have developed an alternative method for score
normalization. Instead of normalizing the claimant speaker
score with a generic composite model trained over speak-
ers using various handsets, we normalize with models that
are speci�c to the handset type. That is, if a claimant
speaker model was trained on a carbon button handset,
then a carbon handset composite model is used to normal-
ize the scores, whereas if the claimant model was trained on

an electret, then an electret composite model is used. The
use of handset-dependent models is motivated by the fact
that models built from carbon handset data have shifted
and scaled score distributions as compared to distributions
from models built using electret handset data [1]. Our goal
is to normalize variability due to handset e�ects by com-
puting di�erences between scores from claimant models and
composite models trained on the same handset type.
Implementing this approach, however, requires a hand-

set detector to determine what type of handset was used
in training (unless the training data is already marked with
handset labels). We implemented a GMM for the two hand-
set classes: carbon and electret. The GMM-based handset
detector was trained and tested with an SRI speech corpus
called Stereo ATIS. Stereo ATIS consists of approximately
10 hours of read sentences from the Air Travel Informa-
tion System (ATIS) task. Each sentence was recorded by
13 male speakers in stereo over a telephone handset and a
Sennheiser noise-canceling microphone. Ten di�erent hand-
sets were used, including seven electrets and three carbon
button transducers. The database was split into two por-
tions for training and testing, with all 10 handsets repre-
sented equally in both. Approximately 3.6 hours and 1.5
hours of speech data from electret and carbon handsets,
respectively, were used to train the handset classi�er. Ap-
proximately 5 hours of the speech data consisting of sen-
tences of about 10 seconds in length were used to test the
classi�ers.
Table 1 shows the performance of the handset detector

used to detect carbon handsets for 256 and 512 Gaussian
mixtures. The false alarm rate indicates the percentage of
times that a handset was incorrectly classi�ed as carbon,
while the miss rate indicates the percentage of times that a
carbon handset was classi�ed as another handset type (in
these experiments, there are only two classes: carbon and
electret). The performance leveled o� after 512 mixtures,
which is the number of mixtures used for handset detection
in the experiments.

Number of False Alarm Rate Miss Rate
Mixtures (%) (%)

256 0.4 1.8
512 0.2 1.1

Table 1. Performance of carbon microphone handset
detector.

Using the handset detector, we labeled all the training
data from the March 1996 NIST evaluation database (used
for both the claimant and imposter modeling). In this ini-
tial implementation, we made hard class decisions, separat-
ing the data into carbon and electret classes. Finally, we
encoded associations between claimant speaker models and
their matched handset composite models. Table 2 shows the
results of applying the handset-dependent composite (H-
Composite) modeling technique to the \one-Session" train-
ing condition of the March 1996 NIST evaluation. The ta-
ble compares the new method with the baseline system for
the 30-,10-, and 3-second tests. Results for two operating
points are shown: the equal error rate (EER) and the false
alarm rate when the miss rate is 10%. As expected, the
improvement for the mismatched telephone case (mismatch



30 Second Test Length, 2 Minutes Training

Scoring Mismatched Tel.# Matched Tel.#
Method EER Pfa(Pm=10%) EER Pfa(Pm=10%)
Baseline 20.0 41.6 6.0 2.3
H-Comp. 12.7 15.8 4.8 2.1

10 Second Test Length, 2 Minutes Training

Baseline 21.6 39.8 7.2 4.3
H-Comp. 14.2 18.5 5.8 3.0

3 Second Test Length, 2 Minutes Training

Baseline 24.6 51.8 9.9 10.5
H-Comp. 18.9 33.5 10.6 11.0

Table 2. Performance of composite (Baseline) and hand-
set-dependent composite in EER, and the false alarm
rate at a 10% miss rate. Results shown separately for
matched tel. number (for both training and testing) and
mismatched tel.

between training and testing) is much greater. The tech-
nique gives signi�cant improvements except in the matched
3-second test case.
Table 3 compares the H-Composite method to cohort-

based methods. Cohort normalization uses one or more
speaker-dependent impostor models as the background
model. The methods include \Cohort" (one cohort), 10
closest cohorts, and 10 maximally spread closest (10-msc)
cohorts [1, 3]. The total number of Gaussians used to nor-
malize each target speaker for the H-Composite, Compos-
ite and the 10 closest and maximally spread cohorts is the
same (1280 Gaussians)1 . All of the methods yield signi�-
cant improvement over the unnormalized scores (no back-
ground model). For the matched telephone number, the H-
Composite performs the best at EER, while the 10 msc per-
forms the best at a 10% miss rate. For the mismatched tele-
phone, the H-Composite method outperformed the cohort
methods, giving a 19.0% reduction in false alarm rate (at
a 10% miss). An interesting feature of the cohort methods
was observed during the testing. For each target speaker,
the closest cohort had the matched handset type as the tar-
get speaker. This suggests that the handset type has at
least as signi�cant of an impact on cohort selection as the
speaker characteristics.

Scoring Mismatched Tel.# Matched Tel.#
Method EER Pfa(Pm=10% ) EER Pfa(Pm=10%)

Unnorm. 32.1 73.3 21.2 32.6
Cohort 22.1 48.9 11.2 12.2
Baseline 20.0 41.6 6.0 2.3
10-closest 14.8 19.4 5.6 1.8
10-msc 13.6 19.5 5.0 1.6
H-Comp. 12.7 15.8 4.8 2.1

Table 3. Comparisons for 30-second test of normaliza-
tion methods of comparable complexity, including co-
hort (closest speaker), 10-closest speakers, and 10 max-
imally spread closest speakers.

To further study the e�ects of handset type, we used our
handset labels on Switchboard to divide the \mismatched

1The cohort methods potentially require a unique set of co-
horts for each claimant speaker, increasing the enrollment time
and storage needs over the composite methods.

tel.#" category into two classes: matched handset type
(but mismatched tel.#'s), and a mismatched handset type
(e.g., trained on carbon, tested on electret). Table 4 shows
veri�cation performance for this additional split of Switch-
board. When comparing training and testing data from
the \matched" telephone numbers and from \mismatched"
telephone numbers, the major factor in predicting perfor-
mance is the type of the telephone handset (whether they
were the same in training and testing or di�erent), not the
di�erence across lines nor within a handset type class (e.g.,
electret).
Figure 1 shows the corresponding 30-second performance

curves of the handset-independent Composite (baseline)
and new H-Composite modeling methods for matched and
mismatched handset types. The plots show signi�cant im-
provement for the mismatched case, and even improvement
for the matched case at low and high miss rates. Figure
3 shows histograms of scores for true and false speaker
veri�cation trials for the new H-Composite method. As
compared to the baseline histogram plots in Figure 2, the
mismatched case is greatly improved by shifting the mean
(Mt) of the target score distribution to the right, resulting
in a sharpening of the overall distribution. In addition, the
means (Mi) and standard deviations (Si) were changed, al-
beit less than the target distributions, illustrating the non-
linearly relation between the H-Composite normalization
and the scores.
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Figure 1. Comparison of baseline and hand-
set-dependent composite modeling methods for 30-sec-
ond test length with matched and mismatched handsets



Condition EER Pfa(Pm=10%)

Matched tel.# 6.0 2.3

Mismatched tel.#, 5.4 4.9
matched handset

Mismatched tel.#, 25.9 47.0
mismatched handset

Table 4. Baseline performance for the matched tele-
phone in both training and testing, matched handset
type (but mismatched telephones), and a mismatched
handset type (e.g., trained on carbon, tested on elec-
tret).
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Figure 2. Handset-indep. composite (baseline) mod-
els: histograms of scores for true (right) and false (left)
speaker trials with for all (top), matched (middle), and
mismatched (bottom) handset types.
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Figure 3. Handset-dep. composite models: histograms
of scores for true (right) and false (left) speaker trials
with for all (top), matched (middle), and mismatched
(bottom) handset types.
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