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ABSTRACT

In this paper we address the problem of building speaker
dependent Hidden Markov Models for a speaker verification
system. A number of model building techniques are described
and the comparative performance of a system using models built
using each of these techniques is presented. Mean estimated
models, models where the means of the HMMs are estimated
using segmental K means but where the variances are taken from
speaker independent models, out performed other techniques
such as Baum Welch re-estimation for training times of 120s,
60s and 15s.  Mean estimated models were also built  with
varying numbers of components in the state mixture distributions
and a performance gain was again observed.  The incorporation
of transitional features into the system had degraded
performance when the Baum-Welch algorithm was used for
model estimation.  However the inclusion of delta and delta-
delta cepstra into the system using mean estimated models now
gave a significant improvement in performance. Taken together
these changes halved the equal error rate of the system from
15.7% to 7.8%.

1. INTRODUCTION

Enrolment material for training speaker recognition systems is
often limited.  The algorithm which estimates the parameters of
the speaker’s models must be able to capture the essential
features of a speaker's voice from the training material if the
speaker verification system is to perform well.  Specifically  the
estimation program should produce accurate estimates from the
minimum training data. This parsimonious use of the training
data allows for the possibility of:

• Using more complex models to better represent the
underlying distribution.

• Setting speaker specific thresholds by reserving some of the
training data for testing.

• Building at least  some of the set of models when data is
scarce.

Therefore we  investigated several techniques for the estimation
of the parameters of the target models, these are described in
Section 2.  We then use the best technique to estimate models
with multiple mixture components and enlarged feature sets.

2. MODEL ESTIMATION METHODS

Six different techniques were used in the experiments described.
The techniques  can be summarised as follows:

1. Expectation Maximisation - using the Forward Backward
Algorithm, Baum Welch Re-estimation. This was regarded
as the reference technique since it is widely used and we
had used this previously (BW)[1].

2. Segmental K Means -  frames in the training data are
aligned to the states of speaker independent models using
the Viterbi algorithm and the speaker dependent state
means and variances are computed from the frames aligned
to the same state. (SKM)[2].

3. Maximum A Priori - estimates of the means and variances
of the target models by modifying a speaker independent
model using the parameters of a SKM speaker dependent
model built on the training data.(MAP)[3].

4. Maximum A Priori Means - estimates of the means only of
the target models by modifying a speaker independent
model using the parameters of a SKM speaker dependent
model built on the training data.  The rate of adaptation is
dependent on the variance of the speaker independent
model (MAP-Mean)[3].

5. Fixed Weighted Average - as MAP Means but the mean
estimate is adapted by some predetermined constant
independent of the variance. (FWA)

6. Mean Estimation - the means are estimated as in the SKM
but the variances are fixed as in Maximum A Priori Means.
This can also be regarded as Fixed Weighted Average with
a very high weighting towards the speaker dependent
models. (ME)

3. NORMALISATION.

Normalisation is considered a key requirement in speaker
verification systems. We note that the pattern matching stage of
the system estimates p O mj( | )  the likelihood of the observation

sequence given the model but we require p m Oj( | )  the
likelihood of the model given the observations.  These are
related by Bayes theorem,
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The prior probability of the speaker p mj( ) is usually assumed
to be the same for all speakers and is disregarded.  Also in this
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speakers.  The exact evaluation of p O( ) is clearly impossible.
Therefore two approximations to this have been proposed.  The
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 can be made. The set A is

referred to as the ‘cohort’ of speaker j and the verification score
is modified by the cohort score[4].  The other approach is to
construct a ‘world’ or ‘general’ model M which may for
example be a speaker independent model (M) in the case of a
Hidden Markov Model system[5]. We then have
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model score normalises the speaker’s score. This has been found
to work well in practice and to perform better than the same
systems using cohorts[6]. This form of normalisation was
therefore used in the experiments reported here.

4. EXPERIMENTAL CONDITIONS

4.1 System Description.
There follows a brief description of our system, for a fuller
system description the speaker is referred to [7] and [8].  The
acoustic analysis used in the experiments was as follows.  The
data was sampled at 8kHz and was then filtered using a
filterbank containing nineteen filters.  The log power outputs of

the filterbank were transformed into twelve cepstral coefficients
and twelve delta cepstral coefficients at a frame rate of 10ms.
These coefficients were augmented by energy and delta energy
parameters to give a twenty six element feature vector.  The
mean of each of the cepstral parameters was estimated for each
segment of speech and subtracted from each of the feature
vectors.  Twenty eight subword models were used to model the
phones of each target speaker.  The stops and fricatives were
each combined into a single broad-class model while each of the
other phones was represented by its own model.  The subword
models used were three state Hidden Markov Models with
continuous mixture distributions and a left to right topology and
no skipping of states allowed.  State distributions were
characterised by a diagonal covariance matrix.

Speaker independent models were built using the TIMIT
database and the American-English part of the OGI Multilingual
Corpus.  Each model state had seven Gaussian mixture modes.
At training time these speaker independent models were used to
segment the training speech for each of the test speakers and
speaker dependent models were then built from this speech.
Initially each of the speaker dependent models had a single mode
per state. This was later increased as explained in Section 5
below.

During recognition an unknown speaker’s speech was matched
to a set of models comprising each of the hypothesised target
speaker’s dependent models and a set of speaker independent
models trained on Switchboard data from the NIST 1995
evaluation.  A score was generated for each of the target
speakers which was the percentage of the total matches achieved
by that speaker’s models.

4.2 Test Corpus.
The experiments described in this paper were carried out on the
development data for the NIST 1996 speaker identification
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False Alarms

BW: FOM:86.0  EER:21.1
MAP-Mean: FOM:89.9  EER:18.1

ME: FOM:92.4  EER:15.2

Figure 2:  ROC curves showing relative performance of BW,
MAP-Means, and ME models at 30s. One- session, 10s test
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BW: FOM:90.5  EER:15.7
MAP-Mean: FOM:92.6  EER:14.2

ME: FOM:94.5  EER:12.7

Figure 1:  ROC curves showing relative performance of BW,
MAP-Means, and ME models at 120s. One- session, 10s test.



evaluation. This comprised 43 male and 45 female target
speakers for whom four minutes of training data were provided.
Training conditions consisted of one minute from a conversation
with a second minute from either

1. the same conversation.
2. a different conversation using the same handset, actually

the same telephone number.
3. a different conversation using a different handset.

The test material consisted of five files from each speaker from
which either 3s, 10s, or 30s of speech was used.  The task was to
score each test file for each of the speakers against  the models
for all the speakers and then generate a Receiver Operating
Characteristic curve from the scores.  The experiments we
carried out on this data used training material from the same
conversation and the 10s set of test data.

5. RESULTS

5.1 Model Building Algorithms
Initial experiments were carried out using the 120s training data
and the male speakers only.  The results shown in Table 1
indicate that of the two full re-estimation techniques BW
outperforms SKM, of the two MAP techniques MAP-Means
outperforms MAP and of the two other techniques that ME
outperforms FWA. Results from other experiments, for example
using female speakers, confirmed this hence the further results
presented are restricted to these three techniques.

The time available for training was then reduced.  When for
Baum-Welch re-estimation there were no examples in the
training data to train a speaker dependent model the equivalent
independent model was substituted.  At the shortest training
times there were sometimes no training examples of particular

models. When this occurred the model set was completed by
including the equivalent speaker independent model although
this was excluded from the subsequent scoring.  Figures 1 to 3
show the effect of reducing the training time on the ROC curves.
These results demonstrate that BW re-estimation requires more
data than the other two methods.  This is unsurprising since
unlike the other methods estimates of the parameter variances
are made by the BW algorithm.  It is well known that more data
is required to make an estimate of the same accuracy of  the
variance of a distribution than the estimate of the mean.  Of
more interest is that the ME method outperforms the MAP-
means technique.  The inclusion of speaker independent data
into the estimation process does not appear to give more robust
models.  There is also  only a small degradation  in the
performance of the ME models when the training time is reduced
from 120s to 30s. Hence using these models some of the training
material could be retained for  use in calibration test scoring
allowing speaker dependent thresholds to be set.

BW SKM MAP MAP-M FWA ME
FOM 90.5 89.9 87.8 92.6 94.4 94.5
EER 15.7 17.2 20.6 14.2 13.2 12.7

Table 1. Performance of the Six Model Building Techniques,
FOM is figure of merit while EER is equal error rate.

5.2 Multiple Mixtures
Our next experiment was to try and improve the performance of
the system with the full two minutes of training data by
increasing the number of components in the state mixture
distributions from one to five.  Previous experiment had shown
that BW models with three component mixtures performed less
well than those with a single component when trained with two
minutes of speech.  However since we were able to estimate
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BW: FOM:78.7  EER:26.5
MAP-Mean: FOM:85.7  EER:22.1

ME: FOM:88.5  EER:19.6

Figure 3: ROC curves showing relative performance of BW,
MAP-Means, and ME models at 15s One-session 10s test.
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ME(1 component): FOM:94.5  EER:12.7
ME(3 component): FOM:96.4  EER: 9.8
ME(5 component): FOM:96.8  EER: 8.3

Figure 4: ROC curves showing relative performance of System
with varying numbers of mixture components in the models,
Means  Estimated models with 120s Training. One-session, 10s
test.



good ME models with less training than BW required we
modified the ME technique to produce three and five
component models. The training data was segmented by aligning
the speech with the speaker independent models using the
Viterbi algorithm. Frames which were aligned to the same
mixture component along the optimal path were pooled and the
means of the distributions were estimated as the means of the
pool.  The variances of the distributions were set equal to the
corresponding component variances in the speaker independent
model.  Figure 4. shows the ROC curve for these models and
demonstrates that a significant improvement has been achieved.

5.3 Delta -Delta Cepstra
The second derivative is widely used in speech recognition and
has been shown to give improved performance in a speaker
verification task[9].  When added to our system using the BW
for model estimation the performance of the system was
degraded. However when the ME technique was used the results
are as illustrated in Figure 5 which shows that adding first delta
cepstra and then the delta-delta cepstra produce incremental
improvements.  We surmise that the variances were not
estimated correctly when Baum-Welch re-estimation was used
causing a degradation instead of an improvement.

6. CONCLUSIONS

In this work we have examined a number of approaches to the
problem of  building models for speaker verification.  We have
shown that the best performance for all training times is given
by models in which only the means of the distributions are
estimated from the training data and the variances are set the
same as those of the distributions of the corresponding speaker
independent models.  This also gives good estimates of the
parameters of the derivatives of the cepstra when these are
included in the feature vector.  Also when sufficient training

data is available increasing the number of mixture components
in the states of the subword model improves performance.
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Figure 5: ROC curves showing relative performance of System
with and without Delta  and Delta-delta cepstra, Means
Estimated models with 120s Training. One-session, 10s test.


