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ABSTRACT

In this paper, we propose a new method, where the likeli-
hood normalization technique is applied at both the frame
and utterance levels. In this method based on Gaussian
Mixture Models (GMM), every frame of the test utterance
is inputed to the claimed and all background speaker mod-
els in parallel. In this procedure, for each frame, likelihoods
from all the background models are available, hence they
can be used for normalization of the claimed speaker likeli-
hood at every frame. A special kind of likelihood normaliza-
tion, called Weighting Models Rank, is also proposed. We
have evaluated our method using two databases - TIMIT
and NTT. Results show that the combination of frame and
utterance level likelihood normalization in some cases re-
duces the equal error rate (EER) more than twice.

1. INTRODUCTION

Although most of the existing speaker veri�cation systems
based on GMM address various problems, they have one
thing in common. The claimed speaker model score (likeli-
hood) is calculated over the whole test utterance, normal-
ized and then is compared with a threshold [1, 2, 3]. In other
words, the likelihood normalization is done at the utterance
level.

We have developed and implemented the frame level like-
lihood normalization method, �rstly, for the speaker identi-
�cation task and have shown its superiority over the stan-
dard accumulated likelihood approach [4]. For the speaker
veri�cation task, we �rst apply likelihood normalization at
frame level and then at utterance level. For the frame level
likelihood normalization we compute the frame likelihoods
of the claimed speaker models as well as the background
speaker models (a set of all registered speaker models). In
other words, in our veri�cation system the test utterance is
processed by claimed and the background speaker models in
parallel in frame by frame manner. Having the likelihoods
from the background models, given particular test frame,
allows the claimed speaker model's likelihood to be nor-
malized at the frame level. Generally, at the frame level
the claimed speaker model's likelihood can be processed
using not only normalization, but any appropriate tech-
nique, which transforms it into a new scores. Transformed
(normalized) likelihood is further accumulated over all test
frames to form a �nal score for the claimed speaker model.
Then, this score can be normalized again, at utterance level,

and compared with a threshold as in the standard speaker
veri�cation systems.
Section 2. of this paper gives brief description of the

GMM as a speaker model. In Section 3. we discuss the
utterance and frame level likelihood normalization. A
new normalization technique called Weighting Models Rank

(WMR) is also presented. Section 4. introduces our speaker
veri�cation system. In Section 5. we describe the databases
and the experimental results are summarized in Section 6..

2. GAUSSIAN MIXTURE MODEL

A Gaussian mixture density is a weighted sum of M com-
ponent densities and is given by the form [3]:

p(xj�) =

MX
i=1

ciN(x; �i;�i) (1)

where x is a d-dimensional random vector, bi(x); i =
1; . . . ;M , is a Gaussian component density with mean �i
and covariance matrix �i, and ci; i = 1; . . . ;M , is the
mixture weight. The complete Gaussian mixture model
is parameterized by the mean vectors, covariance matrices
and mixture weights from all component densities. These
parameters are collectively represented by the notation:
� = fci; �i;�ig ; i = 1; . . . ;M . In our speaker veri�cation
system, each registered speaker is represented by such a
GMM and is referred to by his/her model �. GMM param-
eters are estimated using the standard Expectation Maxi-
mization (EM) algorithm. For a sequence of T test vectors
X = x1; x2; . . . ; xT , the GMM log-likelihood can be written
as [6]:

logP (Xj�) =
1

T

TX
t=1

log p(xtj�) (2)

Then, the standard approach is to normalize logP (Xj�)
and compare it with a threshold. If it exceeds the threshold,
the claimed speaker is accepted, if not - it is rejected.

3. LIKELIHOOD NORMALIZATION

The essence of our method is to apply likelihood normal-
ization at both the frame and utterance levels. This section
describes it in more details.

3.1. At utterance level

For the speaker veri�cation, the likelihood normalization
technique has been proved to improve signi�cantly sys-
tem performance [2, 3, 7]. The general approach is to



apply a likelihood ratio test [8] to an input utterance
X = x1; x2; . . . ; xT using the claimed speaker model �c:

l(X) =
P (�cjX)

P (�cjX)
(3)

where �c is a model representing all other possible speakers.
Applying Bayes' rule and assuming equal prior probabili-
ties, the likelihood ratio in the log domain becomes:

�(X) = logP (Xj�c) � logP (Xj�c) (4)

The likelihood logP (Xj�c) is directly computed from
Eq.(2). The likelihood logP (Xj�c) is usually approximated
using a collection of background speaker models. With
the set of B background speaker models, f�1; . . . ; �Bg, the
background speaker's log-likelihood is computed as [3]:

logP (Xj�c) = log

(
1

B

BX
b=1

P (Xj�b)

)
(5)

When the background speaker set consists of all registered
speakers N , Eq.(3) becomes posteriori probability P (�cjX)
scaled by factor N :

l(X) =
P (Xj�c)

1

N

P
N

b=1
P (Xj�b)

=
P (Xj�c)P (�c)

1

N

P
N

b=1
P (Xj�b)P (�b)

= NP (�cjX) (6)

3.2. At frame level

At the frame level, the likelihood normalization is applied
on the single vector likelihood p(xtj�). In this case, the
likelihood normalization is done using:

pnorm(xtj�i) =
p(xtj�i)

1

B

P
B

b=1
p(xtj�b)

(7)

In contrast to the utterance level normalization, the nor-
malized frame likelihoods are not compared with a thresh-
old. Instead, they are accumulated over all vectors xt; t =
1;2; . . . ; T to produce the new score:

Sci(Xj�i) =
1

T

TX
t=1

log pnorm(xtj�i) (8)

As in the utterance level normalization, here also arises the
problem of choosing the proper background speaker set.
Given the claimed speaker model i, we used the following
background speaker sets [4]:
All others - the background speaker set consists of all

registered speakers, except the speaker i.
Top M speakers - The likelihoods from all registered

speaker models for the current vector xt are computed, and
those speaker models, which have the M maximum likeli-
hoods are selected as the background speaker set (except
the speaker i). Obviously, the Top M speakers will change
from frame to frame.
Cohort speakers - the background speaker set consists

of K acoustically most close speakers to the speaker i. The
cohort speakers are determined on the training data in ad-
vance and this procedure is described in [7].

3.3. Weighting Models Rank (WMR)

This is the new normalization approach where frame like-
lihoods are computed by all registered speaker models in-
cluding the claimed speaker model. Then they are sorted in
order, corresponding to the value p(xtj�i). This is the same
as to make N-best list of models for each vector xt. This
procedure can be called also ranking of the speaker models.
Table 1 shows how the speaker models are ordered in this
list [4].

Table 1. N-best list of speaker models

Rank Weight Model

1 w1 Model �l (max.likelihood)
. . . . . . . . .
m wm Model �k
. . . . . . . . .
N wN Model �p (min. likelihood)

This table also shows that each rank (each row in the
table) is assigned a weight wn; n = 1; 2; . . . ;N . Now the
scoring procedure is as follows:
Step 1. For each test vector xt; t = 1; 2; . . . ; T , construct

the N-best list of the reference models �i; i = 1; 2; . . . ;N ,
as shown in the Table 1.
Step 2. For each model �i; i = 1; 2; . . . ;N , �nd its rank

n, i.e. its place in the N-best list, and assign the corre-
sponding weight wi(t) to this model.
Step 3. For each model �i, sum up all weights assigned

to this model to produce its score:

Sci(Xj�i) =

TX
t=1

w
i(t) (9)

where wi(t) is the weight of the model i at time t.
Obviously, in this scoring approach, the most important

issue is how to set the values of the weights wn. Rather than
to use any particular values for the weights, it seems to be
reasonable to use values obtained according to a certain
typical function. We have found that for speaker identi�-
cation, the exponential function shown in Fig.1, gives the
best results [4] and here we used only this function.

Rank

Weight

N

N

1
1

Figure 1. Weights as an exponential function of the

model rank.



4. SPEAKER VERIFICATION SYSTEM

In order to have frame likelihoods from all background
speakers available at each frame, a modi�cation of the stan-
dard speaker veri�cation system is necessary. Fig.2 shows
our modi�ed speaker veri�cation system.
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Figure 2. Block diagram of the modi�ed speaker

veri�cation system.

In this system, input speech is analyzed and transformed
into a feature vector sequence by Front-end Analysis block
and then each test vector xt is fed to the claimed speaker
model GMM.c as well as to all background speaker mod-
els in parallel. The GMM.c gives likelihood pc(xt) and
background speaker models give pb(xt); b = 1; . . . ; B. All
these likelihoods are passed to the so called Likelihood

transformation and accumulation block, where they are
normalized or transformed by WMR and accumulated for
t = 1; 2; . . . ; T to form the utterance level scores. The ut-
terance scores Scb(X); b = 1; . . . ; B are further used for
utterance level likelihood normalization of the Scc(X).

5. DATABASES AND SPEECH ANALYSIS

NTT database for speaker recognition consists of record-
ings of 35 speakers (22 males and 13 females) collected in
5 sessions over 10 months in sound proof room [9]. For
training the models, 5 equal and 5 di�erent sentences ut-
tered at normal speed for each speaker from one session
were used. Five other sentences uttered at normal, fast and
slow speeds, from the other four sessions were used as test
data. Average duration of the sentences is about 4 sec. The
input speech was sampled at 12 kHz. 14 cepstrum coe�-
cients were calculated by the 14th order LPC analysis at
every 8 ms with a window of 21.33 ms. Then these coe�-
cients were further transformed into 10 mel-cepstrum (cep)
and 10 regressive (�cep) coe�cients. Each session's mel-
cepstrum vectors were mean normalized and silence parts
were removed.
For the experiments on TIMIT corpus, 168 speakers

(112 males and 56 females) from the \test" portion of the
database were used. From the available 10 sentences per
speaker 8 sentences (SAx1, SXx5 and SIx2) were used for

training and 2 sentences (SA and SI) for testing. Speech
data were analyzed using the same front-end parameters
as for the NTT database, except that mel-cepstrum vec-
tors were not mean normalized and silence parts were not
removed. It has been found that cepstral mean normaliza-
tion and silence removal of TIMIT data degrade the system
performance [5].

6. EXPERIMENTS

In the experiments with NTT database each one of the 35
speakers was acting as customer (true test) while the others
were used as impostors and veri�cation was performed by
rotating through all speakers and then averaging the results
over all test sessions. This gives 175 true tests (35 � 5) and
5950 impostor tests (35 � 5 � 34) per session.
Results for the normal, slow and fast speed test utter-

ances are reported in Tables 2, 3 and 4 respectively. The
equal-error rate (EER) is computed a posteriori using a
global threshold [2, 3]. In these tables \Background speak-
ers" shows the type of the background speaker set used
for frame likelihood normalization only. \All" means All
others and \Coh." means Cohort types. Cohort consists
of 5 speakers. For utterance level likelihood normalization
we have tried the same types of background speaker sets
and have obtained best EER with \Top 10" type. That is
why only these results are presented here. Baseline results
are computed using only utterance level normalization [2].

Table 2. EER (%) for normal speed test in

NTT database. Utterance level normalization back-

ground speaker set - Top 10.

Model Fea- Background speakers WMR Base
type ture All Top10 Coh. line

4 m. cep 2.31 2.30 2.14 1.31 2.50
full c+�c 1.51 1.48 1.33 0.84 1.64
8 m. cep 1.43 1.44 1.38 0.66 1.66
full c+�c 1.09 1.09 0.96 0.52 1.18
32 m. cep 1.48 1.48 1.29 0.91 1.65
diag. c+�c 1.14 1.13 1.00 0.95 1.29
64 m. cep 1.24 1.24 1.20 0.72 1.60
diag. c+�c 0.87 0.88 0.86 0.60 1.07

Table 3. EER (%) for slow speed test in NTT

database. Utterance level normalization back-

ground speaker set - Top 10.

Model Fea- Background speakers WMR Base
type ture All Top10 Coh. line

4 m. cep 3.36 3.33 3.00 1.94 3.79
full c+�c 2.79 2.77 2.27 2.06 2.96
8 m. cep 2.18 2.16 2.06 1.45 2.46
full c+�c 1.95 1.95 1.77 1.36 2.06
32 m. cep 2.60 2.62 2.16 1.50 2.90
diag. c+�c 2.25 2.26 1.92 1.76 2.36
64 m. cep 2.76 2.76 2.23 1.57 3.15
diag. c+�c 2.38 2.39 1.94 1.43 2.57



Table 4. EER (%) for fast speed test in NTT

database. Utterance level normalization back-

ground speaker set - Top 10.

Model Fea- Background speakers WMR Base
type ture All Top10 Coh. line

4 m. cep 2.78 2.75 2.65 1.92 3.07
full c+�c 2.15 2.15 1.93 1.29 2.26
8 m. cep 1.89 1.88 1.66 1.11 2.01
full c+�c 1.27 1.26 1.09 0.80 1.43
32 m. cep 2.91 2.91 2.51 1.90 3.06
diag. c+�c 2.71 2.71 2.58 1.79 2.88
64 m. cep 2.42 2.44 2.06 1.48 2.65
diag. c+�c 2.44 2.43 2.44 1.28 2.66

\Model type" column of the tables speci�es the GMM used
in the experiments. \4 m. full" means GMM with 4 mix-
ture densities with full covariance matrix and \32 m. diag"
means GMM with 32 mixture densities with diagonal co-
variance matrix. The EER obtained using only mel-cepstral
feature vectors (\cep") and both mel-cepstral and regressive
feature vectors (\c+�c") are presented in separate rows.
These results clearly show that the combination of frame

and utterance level likelihood normalization outperforms
the baseline with only utterance level normalization. All
types of background speaker sets give better ERR. Among
them the Cohort type is the best, while All others and
Top M give almost the same results. WMR normaliza-
tion, however, gives the lowest EER which in some cases is
more than twice lower than the baseline results. Compara-
ble results to our baseline system using the same database
were also reported in [2]. When test utterances are uttered
at slow or fast speed, the system performance degrades sig-
ni�cantly, but this is due to the training of speaker models
only on normal speed utterances. However, in both cases
of slow and fast speed tests, all of our frame normalization
techniques outperform the baseline system.
Table 5 shows the results for TIMIT database. In these

experiments we used 168 speakers (the same as in [3]) with
two test sentences per speaker and therefore rotating over
all these speakers we had 168�2 = 336 true tests and 167�

Table 5. EER (%) for TIMIT database. Utterance

level normalization background speaker set - Top

20.
Model Fea- Background speakers WMR Base
type ture All Top20 Coh. line

4 m. cep 0.71 0.71 0.67 0.48 0.72
full c+�c 0.60 0.60 0.56 0.39 0.61
8 m. cep 0.42 0.42 0.38 0.16 0.43
full c+�c 0.45 0.45 0.41 0.15 0.46
16 m. cep 0.39 0.39 0.35 0.16 0.40
full c+�c 0.45 0.45 0.40 0.19 0.46
32 m. cep 0.58 0.58 0.51 0.09 0.59
diag. c+�c 0.65 0.65 0.58 0.13 0.66
64 m. cep 0.57 0.57 0.53 0.24 0.57
diag. c+�c 0.76 0.76 0.70 0.19 0.76

2 � 168 = 56112 impostor tests available for experiments.
In TIMIT database, the test and train conditions are the

same which is very simple for the task and, consequently,
it is more di�cult to outperform the baseline performance.
This is evident from the results of All others and Top

M background speaker sets which in contrast to the multi-
session NTT database are the same as the baseline. The
Cohort is slightly better, and WMR signi�cantly reduces
the EER to 0.09%. Using only utterance level likelihood
normalization and di�erent front-end analysis (16kHz fs,
30 MFCC) Reynolds reported best EER of 0.24% in [3].

7. CONCLUSION

We have introduced and experimented with frame level like-
lihood normalization for speaker veri�cation. A new tech-
nique, Weighting Model Rank, was also experimented. In
combination with utterance level likelihood normalization
both approaches showed better results in the speaker veri-
�cation task compared to the standard accumulated likeli-
hood method on both the TIMIT and NTT databases. As
results for the NTT database show our frame level likelihood
normalization is robust against both the variations of the
speaker voices and speaking speeds. The WMR technique
performed best on both databases reducing the equal error
rate up to 0.52% for NTT and 0.09% for TIMIT database.
Our previous studies also showed that frame level likeli-

hood normalization is e�ective for the speaker identi�cation
task and that, in general, any non-linear transformation
(normalization) of the likelihoods at the frame level in
u-
ences the speaker recognition performance.
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