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ABSTRACT   

VQ-based speaker recognition has proven to be a suc-
cessful method. Usually, a codebook is trained to mini-
mize the quantization error for the data from an individ-
ual speaker. The codebooks trained based on this crite-
rion have weak discriminative power when used as a
classifier. The LVQ algorithm can be used to globally
train the VQ-based classifier. However, the correlation
between the feature vectors is not taken into considera-
tion, in consequence, a high classification rate for feature
vectors does not lead to a high classification rate for the
test sentences. In this paper, a heuristic training proce-
dure is proposed to retrain the codebooks so that they
give a lower classification error rate for randomly se-
lected vector-groups. Evaluation experiments demon-
strated that the codebooks trained with this method pro-
vide much higher recognition rates than that trained with
the LBG algorithm alone, and often they can outperform
the more powerful Gaussian mixture speaker models.

1. INTRODUCTION

Vector quantization (VQ) based speaker recognition is a
conventional and successful method [1]. The basic idea
in this approach is to compress a large number of short-
term spectral vectors into a small set of code vectors. A
codebook can also be viewed as a generalization of the
long-term average where the short-term spectral varia-
tions due to different textual content are not averaged out
but are modeled by separate code vectors. The successful
modeling of the underlying acoustic classes allows the
VQ-based system to achieve high recognition accuracy
even with very short test utterances. A VQ codebook is
usually trained with the LBG algorithm [2] to minimize
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the quantization error when replacing all feature vectors
with their corresponding nearest code vectors. The code-
book trained based on above criterion tends to represent
the density and clustering of the training data. One
weakness of using the LBG codebooks as a classifier is
its weak discriminative power due to the fact that only
the samples within a class, but no competitive data, have
been used during the training process. In other words,
minimizing the quantization error of the codebook does
not necessarily lead to an optimal classification perform-
ance.

Several algorithms have been proposed by Kohonen [3]
to globally optimize the codebooks after they are gener-
ated with a certain unsupervised learning algorithm.
These algorithms are called learning vector quantization
(LVQ). Instead of seeking an optimal approximation to
the density functions of the training samples, the code-
books trained with one of the LVQ algorithms tend to
define directly the classification borders between classes
according to the nearest-neighbor rule. However, the
classification decision for a speaker depends on the vec-
tor sequence derived from a test sentence rather than on
an individual vector, thus, a higher correct classification
rate for feature vectors achieved with the LVQ code-
books does not necessarily lead to a higher speaker iden-
tification rate. This is because the feature vectors are
highly correlated, and this correlation has not been taken
into consideration in the LVQ algorithm. In this paper,
we develop a new supervised learning procedure so that
the codebooks are trained to give a lower classification
error rate for randomly selected vector-groups. Since this
optimization criterion is consistent with the speaker
classification decision rule, the codebooks trained with
this method provide much higher speaker identification
rates than that trained with the LBG or the LVQ algo-
rithms, and can even outperform the more powerful
Gaussian mixture speaker models (GMMs).



2. ALGORITHM

Suppose that there are L speakers and their codebooks
{ }Y k Lk  = 12, ,...,  have already been generated by the
LBG algorithm. During the test, an unknown speaker
provides a test sentence from which a set of test vectors,
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techniques. The distortion of a single vector 
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and the average distortion of the whole test sentence is
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then, the unknown speaker is identified as the reference
speaker whose model gives the smallest quantization
error
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Obviously, the classification decision for an unknown
speaker is made depending on the scores from all mod-
els. In contrast, the LBG codebooks are trained indi-
vidually. We believe it is possible to further reduce the
classification error by employing a proper discriminative
training algorithm. The following iteration procedure can
be applied after the codebooks are initialized by the LBG
algorithm.

1. Randomly choose a speaker, denoted as speaker j.
2. From the training data of speaker j, select N vectors

{ }r

xt
N

1
 as a vector-group.

3. Calculate the average distortion of these N vectors
from each speaker's model using Eq. (2), now T=N.

 If the following conditions are satisfied, then go to
step 4, otherwise go to step 5.

 (a) Si  is the smallest value but i j≠ ,

 (b) ( )S S S wj i j− </ , where w is the window size.

4. To each vector 
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 where α is a learning rate, after all vectors in the

current vector-group being processed, go to step 1.
5. In the case that the current vector-group is correctly

classified, for each vector 
r

xt , suppose 
r

ym
j  is the

nearest code vector in speaker j 's codebook,  adjust
r
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j  by

 

 ( )r r r r

y y x ym
j

m
j

t m
j⇐ + −εα

 
 where α is the same learning rate as in step 4  and ε is

another small constant to scale down the learning
rate. After all vectors in the current vector-group have
been processed, go to step 1.

The above iteration procedure can be repeated until the
given iteration number is reached. It is easy to see that
after the modification in step 4, the average distortion for
the current misclassified vector-group from the correct
speaker model decreases and that from the wrong speaker
model increases. Similar to the LVQ3 algorithm, step 5
intends to keep the codebooks approximating the distri-
butions of the training data. In fact, the above learning
procedure can be regarded as an extension of the LVQ
algorithm. If  the number of vectors in each vector-group
is set to one (N=1), then the training procedure is aimed
at reducing the number of misclassified vectors, which is
exactly the goal of the LVQ algorithm. Therefore, we
named the above algorithm as the Group Vector Quanti-
zation (GVQ) algorithm.

The three parameters, learning rate (α), window size (w)
and the constant (ε), have the same meaning as that de-
scribed in the LVQ3 algorithm. An extra parameter to be
determined is the number of vectors in each vector-group
(N). If the goal of the training procedure is to reduce the
number of misclassified vectors, then N should be set to
1. On the other hand, if we want to design the codebooks
for speaker identification, N should be larger than 1. The
optimal value of N depends on the amount of available
data and has to be determined through experiments. A
general guide is that a small N may lead to a higher
frame level performance but the sentence level perform-
ance may be lower. If N is too large, the number of mis-
classified vector-groups in the training data will be very
small, in the extreme case, no wrong vector-groups,
therefore, no learning happens. Another consideration is



how to select vectors to compose a vector-group. One
approach is selecting N vectors continuously from the
training sentences so that the dynamic information of
speech signals is retained. Alternatively, the N vectors in
a vector-group can be chosen randomly from the avail-
able training sentences. In this case, the vectors in one
vector-group may come from different training sen-
tences. In the text-independent speaker recognition, the
spoken texts occurring in the training data may not exist
in the test sentences, and the system relies mainly on the
distributions of the feature vectors rather than on the
order of vectors, thus it is not necessary to keep the order
of the training vector sequences. In the following, all
evaluation experiments were conducted in the text-
independent mode, thus we make use of the second
method to select vectors for each vector-group.

3.  EVALUATION DATA

The proposed GVQ algorithm has been evaluated with
the TIMIT database. Since the TIMIT database contains
wideband (8 kHz) speech signals and were recorded in
quiet environment, the identification task with this data-
base is very easy. To demonstrate the power of the new
training algorithm, we made the identification task more
difficult by filtering all speech signals with a 101-point
FIR filter. The bandwidth of the filter is 300- 3200 Hz
(corresponding to the telephone line bandwidth). The
GVQ algorithm is a discriminative training procedure,
which means that data from all speakers should be pre-
sented during the training process. To reduce the total
amount of required memory and experimental time, only
a subset of the TIMIT database consisting of 112 male
speakers were used. Besides, the unvoiced parts of
speech signals are removed automatically based on an
adaptive energy threshold. Seven sentences (two "sa" and
five "sx" sentences) were used for training, and the rest
three "si" sentences were used for test. The three "si"
sentences were first concatenated together to form a long
one and then was cut into several pieces of the same
length (60 frames, 960 ms in length). 16 MFCC coeffi-
cients were calculated from each frame of the signals to
compose a feature vector. The analysis window size was
32 ms (512 samples) with 16 ms overlapping. Only five
test utterances from each speaker were used in the
evaluation experiments, that is, on each test point, 112×5
classification decisions have been made.

4. EXPERIMENTAL RESULTS

4.1 Comparing the LBG and the LVQ algorithms
We first compare the performance of codebooks trained
by the LBG or the LVQ algorithms. As mentioned be-

fore, the optimization criteria of these two algorithms are
different. Figure 1 (a) shows the frame level classifica-
tion rate (i.e., on the basis of individual test vectors) with
these two kinds of the codebooks. The initial LVQ code-
books were taken from the LBG codebooks. It is seen
that in all cases the classification performance was im-
proved after the codebooks had been further fine-tuned
by the discriminative LVQ algorithm. For LVQ code-
books, the classification rate degrades slightly in the case
of using larger codebooks. This is because the LVQ
codebooks have strong discriminative power and may get
overfitted with the training data if the codebook is too
large. On the other hand, the classification performance
with the LBG codebooks improves monotonically with
the codebook size. However, even at its highest point, it
is still lower than the corresponding LVQ codebooks.
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Figure 1 (a) Left panel: classification rate for individual
test vectors; (b) Right panel: classification rate for test
utterances. Each test utterance consists of 60 test vec-
tors.

The sentence level performance is shown in the right
panel of Figure 1. In contrast to the frame level situation,
the LBG codebooks provide better sentence level per-
formance than the corresponding LVQ codebooks. From
the results shown in Figure 1, we see that, even though
the LVQ codebooks give a higher classification rate for
feature vectors, the speaker identification performance is
not improved by applying the LVQ algorithm. The main
reason is that the classification decision for a speaker
depends on a vector sequence rather than on an individ-
ual vector. During the LVQ training procedure, only a
single vector is considered each time and the correlation
between these vectors is not taken into consideration. We
will show that the proposed GVQ algorithm overcomes
this weakness.

4.2 Parameters in the GVQ algorithm
Several parameters have to be specified before using the
GVQ algorithm. The first one is the learning rate α. α
determines how far the code vectors will be moved when
a vector-group is misclassified. Other parameters include



the number of training epochs () and the number of vec-
tors in a vector-group (N). A training epoch is defined as
the iteration number that equals to the total number of
training vectors. We systematically studied these parame-
ters with regard to their effects on the performance. Fig-
ure 2 displays the speaker identification rate as a function
of the training epochs under different learning rates. For
comparison, the performance from the initial LBG code-
books is also included in the figure. It is seen that the
performance can always be improved after applying the
GVQ algorithm.
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Figure 2 Learning rate (α) vs. learning epochs. The
number of vectors in each vector-group (N)  is 4, and the
codebook size is 8.
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Figure 3 Speaker identification rate vs. codebook size
and the number of vectors in each vector-group (N).

Now with α=0.2, 3, the effect of N is presented in Fig-
ure 3. Except for N=1, the GVQ codebooks can signifi-
cantly outperform the corresponding LBG codebooks.

With the increase of N, the performance improves further
but it may need longer time to train the codebooks. The
gain of using the GVQ algorithm is especially large for
the smaller codebooks.

4.3 Comparing the GVQ codebooks with the GMM
A Gaussian mixture model (GMM) is a weighted sum of
several multivariate Gaussian densities. Reynolds [4]
first applied the GMMs to speaker recognition applica-
tions. Recently, the GMM becomes a popular speaker
model and has been shown to give a very high speaker
recognition performance. We also implemented this
model and made a comparison with the VQ codebooks
trained by different methods. A summary of the identifi-
cation results is given in Table 1. The model order means
the number of code vectors in the VQ codebooks or the
number of Gaussian functions in the GMMs. As ex-
pected, the performance improves with the model order.
For the same model order, the GMMs do provide a better
performance than the LBG codebooks, but the GVQ
codebooks give the highest performance. Another advan-
tage of the VQ-based speaker models over the GMMs is
that in the test phase the VQ models are faster.

Filtered TIMIT database
Model Order 4 8 16 32

LBG 49.5 56.0 64.1 70.2
GMM 68.2 75.2 78.4 79.6
GVQ 74.3 79.8 85.9 86.5

Table 1 Comparing speaker identification performance
with the LBG codebooks, the Gaussian mixture speaker
models and the GVQ codebooks.
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