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ABSTRACT

Along with the spoken message, speech contains informa-
tion about the identity of the speaker. Thus, the goal
of speaker identi�cation is to develop features which are
unique to each speaker. This paper explores a new fea-
ture for speech and shows how it can be used for robust
speaker identi�cation. The results will be compared to the
cepstrum feature due to its widespread use and success in
speaker identi�cation applications. The cepstrum, however,
has shown a lack of robustness in varying conditions, espe-
cially in a cross-condition environment where the classi�er
has been trained with clean data but then tested on cor-
rupted data. Part of the bispectrum will be used as a new
feature and we will demonstrate its usefulness in varying
noise settings.

1. INTRODUCTION

Speech is a complex interaction between quasi-periodic
pu�s of air generated by the larynx opening and closing
and the various cavities and anatomical structures of the
speaker. Consequently, speaker recognition has been an on-
going e�ort to solve a very complex problem. Speaker iden-
ti�cation is the task of assigning a speech utterance from
an unknown speaker to the correct speaker of a known set.
Speaker identi�cation techniques have applications in secu-
rity access, telephone transactions, and forensic science.

One feature that has been used quite successfully in text-
independent speaker identi�cation experiments, even with
small amounts of training data, is the cepstrum. Measure-
ments from the vocal tract �lter are used for distinguishing
speakers. The cepstral feature is used in [1] for speaker iden-
ti�cation experiments. When the training and testing ma-
terial is clean speech from the TIMIT database, the speaker
identi�cation rate is about 96%. However, when the test-
ing data contains 10 dB additive white Gaussian noise, the
success rate drops to about 20%.

Higher-order statistics (HOS) are used in [2] to help com-
bat the drastic fall o� rate in cross-conditions. The autore-
gressive (AR) coe�cients are calculated using two di�erent
HOS based methods and then the AR coe�cients are con-
verted to cepstral coe�cients. Sixteen speakers from the
King database are used with about 90 seconds of train-
ing data and 10 seconds of testing data. When trained
with clean data and tested in 20 dB white Gaussian noise,
the HOS methods employed yield improvements in speaker

identi�cation of up to 40%. However, at 10 dB, the improve-
ment is only about 5% and at 5 dB there is little di�erence.
The drawback to these methods is a lot of extra compu-
tations. Interestingly, the performance gains are much less
when training and testing are both done with noisy data.
The log-bispectrum is used in [3] for speaker identi�cation,
but the experiment was limited to two speakers.
Although di�erent databases and conditions were used for

these examples, it is clear that current speaker identi�cation
techniques severely degrade when the speech samples are
noisy or when training and testing are performed under
di�erent noise conditions. This research investigates the
use of a new feature by using part of the nonredundant
region of the bispectrum. The goal is to derive a feature for
speaker identi�cation that can be e�ective when the testing
and training data are collected under varying noise levels
and channels. Text-independent data will be used in all the
tests.
The layout of the paper is as follows: Section 2 reviews

HOS with an emphasis on the bispectrum. Some of the ad-
vantages of the bispectrum include its immunity to additive
Gaussian noise and that phase relations are preserved. Sec-
tion 3 explains the setup for the speaker identi�cation ex-
periments and gives results under various noise conditions.
The cepstrum feature is also included here for comparison.
The results are then analyzed in Section 4. Section 5 draws
conclusions and gives future work.

2. BISPECTRUM

One of the main motivations in using higher-order statistics
is that for Gaussian noise, the kth-order spectrum, k > 2,
is zero and hence, in theory, the bispectrum of the desired
signal will be immune to additive Gaussian noise. Another
motivation is that cumulants and polyspectra can preserve
phase relations while second order statistics are phase blind.
Finally HOS are key tools for analyzing nonlinear processes
and could possibly provide additional information regarding
the nonlinear speech generation mechanism [4]. The bispec-
trum is used in this research because it is computationally
less expensive than other HOS features.
The third-order cumulant for a zero-mean stationary pro-

cess fx(k)g is de�ned as:

C3;x(�1; �2) = Efx(k)x(k+ �1)x(k+ �2)g (1)

= Efx(�1)x(�2)g �Efg(�1)g(�2)g (2)

where fg(k)g is a Gaussian random process which has



second-order statistics identical to fx(k)g. Thus, a non-zero
third-order cumulant for a process fx(k)g indicates devia-
tion from Gaussianity. The bispectrum is de�ned as the
2-dimensional Fourier transform of the third-order cumu-
lant given by:

B(!1; !2) =

1X

�1=�1

1X

�2=�1

C3;x(�1; �2)e
�j!1�1e

�j!2�2 (3)

2.1. Regions of Symmetry

Just like there are regions of symmetry for the autocorre-
lation (i.e., r(��) = r�(�)), there are also regions of sym-
metry for the third-order cumulant and the bispectrum of
a stationary process. By knowing the third-order cumu-
lant or bispectrum in a nonredundant region allows one to
know the rest of the coe�cients by symmetry. Thus, the
number of computations are greatly reduced. The region
!2 > 0; !1 � !2; !1+!2 � � de�nes the �rst nonredundant
region of B(!1; !2). By using the correct portion of this re-
gion, an ARMA(p,q) non-Gaussian signal can be uniquely
speci�ed [5]. For more details on the regions of symmetry
and techniques for estimating the bispectrum, see [6].

3. EXPERIMENTAL SETUP

Twenty male speakers from the same dialect region were
selected from the TIMIT database for the speaker identi�-
cation experiments. The SX's and SI's sentences were used
for training (9 seconds of voiced speech) and the two re-
maining SA sentences were then used in testing (average of
1.74 seconds of voiced speech per test sentences). The train-
ing data and the testing data are kept short to increase the
di�culty and to simulate military environments where very
limited amounts of data is available. Frame lengths of 16
msec and 32 msec were considered. The e�ects of smooth-
ing using a 5� 5 Rao-Gabor �lter was explored along with
averaging e�ects. If averaging was done, a frame length of
N was divided into 3 segments of length N=2 by using 50%
overlap.
The bispectrum in these experiments was calculated us-

ing the direct method. Since the bispectrum preserves
phase relations, two distances were used: One using the dif-
ference between the magnitude of the testing and training
data and one that includes the phase. The number of points
used from the nonredundant region varied. A symbol like
5)15 in the tables indicates that the �rst �ve columns in
the �rst nonredundant region of the bispectrum (See Fig-
ure 1) are used. Thus, a total of 15 points are used in
the distant measure. The frequency spacing for B(!1; !2)
is !1 = ( 2�Fs

N
)�1 and !2 = ( 2�Fs

N
)�2. For TIMIT data,

Fs = 16000 Hz and N = 256 for a 16 msec window.

3.1. TIMIT Results

A nearest neighbor classi�er was used where 20 distances
were kept: one for each speaker. For each test frame, the
minimum distance to each reference speaker was calculated.
The distances were accumulated over the entire test sen-
tences. The speaker with the lowest accumulated distance
was declared the winner. Four di�erent noise cases were ex-
amined. The �rst noise case was a cross-condition of train-
ing with clean data and testing in data corrupted by 10
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Figure 1. First 15 points in the nonredundant re-

gion of the bispectrum.

dB additive white Gaussian noise. The other noise cases
contaminated the training and testing with the same type
of noise: 10 dB additive white Gaussian, 10 dB additive
colored Gaussian, and multiplicative rayleigh noise to sim-
ulate fading e�ects. Ten Monte Carlo simulations were used
with di�erent noise realizations for the training and testing
phase.
Table 1 gives the results for a 16 msec frame length when

the training and testing data is uncorrupted. The �rst col-
umn gives the number of columns/total points used in the
nonredundant region of the bispectrum. The second col-
umn gives results when no smoothing is used and just the
magnitude of the feature is considered, jjAj � jBjj. The
third column gives results when no smoothing is used but
the phase is included in the distance measurement, jA�Bj.
The fourth and �fth column is the same as the second and
third column except smoothing is used. Table 2 gives the re-
sults for a 32 msec frame length. An entry such as 65.0/10.7
in the tables would indicate that 65.0% of the test sen-
tences were scored correctly, but only 10.7% of the individ-
ual frames were scored correctly.

No Averaging

No Smoothing Smoothing

jjAj � jBjj jA� Bj jjAj � jBjj jA�Bj

5)15 65.0/10.7 80.0/16.6 75.0/13.2 80.0/17.2

7)28 72.5/13.5 85.0/20.7 82.5/16.2 92.5/21.9

9)45 75.0/14.6 87.5/20.2 80.0/16.7 85.0/22.3

Averaging

No Smoothing Smoothing

jjAj � jBjj jA� Bj jjAj � jBjj jA�Bj

5)15 70.0/10.0 90.0/18.4 67.5/11.6 75.0/14.4

7)28 67.5/16.6 80.0/18.4 67.5/12.3 77.5/15.1

9)45 60.0/12.4 80.0/18.3 70.0/13.1 75.0/16.0

Table 1. Bispectrum results for frame length of 16

msec, 20 speakers.

From Tables 1-2, it is seen that some of the best results
for the bispectrum occurred for a frame length of 16 msec
with 7 columns from the nonredundant region and no aver-
aging. A frame length of 32 msec with 7 columns from the
nonredundant region along with averaging also gave decent
results. Thus, the focus for testing the bispectrum under
various noises was limited to four variations:
1.) 16 msec frame length, no averaging, no smoothing,
2.) 16 msec frame length, no averaging, smoothing,



No Averaging

No Smoothing Smoothing

jjAj � jBjj jA� Bj jjAj � jBjj jA�Bj

5)15 52.5/11.2 55.0/14.1 37.5/12.5 50.0/14.8

7)28 35.0/13.1 50.0/15.9 50.0/13.9 60.0/17.4

9)45 57.5/14.4 87.5/20.2 45.0/14.6 65.0/19.5

Averaging

No Smoothing Smoothing

jjAj � jBjj jA� Bj jjAj � jBjj jA�Bj

5)15 42.5/10.6 65.0/16.7 75.0/13.3 80.0/17.3

7)28 65.0/15.0 85.0/21.5 82.5/16.3 92.5/22.0

9)45 77.5/16.7 82.5/21.6 80.0/16.8 85.0/22.4

Table 2. Bispectrum results for frame length of 32

msec, 20 speakers.

3.) 32 msec frame length, averaging, no smoothing,
4.) 32 msec frame length, averaging, smoothing.

When averaging is performed, the frame length is 32 msec,
but the DFT length will be the same as the 16 msec frame
lengths due to averaging. Thus, the frequency range for !1
and !2 of the bispectrum is from 0 to 375 Hz.
These four cases should yield insights into how impor-

tant averaging and smoothing is in regards to estimating
the bispectrum, especially in noisy situations. The distance
measure will include the phase since it gave better results.
Table 3 gives the results. The �rst line lists the training
conditions and the second line lists the testing conditions.

1 1 10 dB w 10 dB c fade

1 10 dB w 10 dB w 10 dB c fade

16 msec, No Avg., No Smooth.

85.0/20.7 86.0/16.9 69.25/14.3 73.0/15.2 81.5/15.0

16 msec, No Avg., Smooth.

92.5/21.9 88.0/16.7 79.5/14.6 83.25/15.7 87.25/14.3

32 msec, Avg., No Smooth.

85.0/21.5 84.75/19.3 74.5/17.3 75.75/17.9 79.0/17.4

32 msec, Avg., Smooth.

92.5/22.0 88.5/16.8 82.5/14.8 80.5/15.6 83.75/14.2

Table 3. Bispectrum results for frame length of 16

and 32 msec window, 20 speakers, various noises.

Note that with additive Gaussian noise, the bispectrum
features continue to do well. Smoothing always boosted the
overall success rate while averaging helped the overall suc-
cess rate about half the time. Compared to the cepstrum
feature for a cross-condition (see Section 3.3), the bispec-
trum does extremely well. The success rate of 88.50% for a
32 msec frame length with averaging and smoothing is quite
impressive in a cross-condition. The other noise conditions
of additive white, additive color, and multiplicative noise
also did extremely well yielding results of 82.50%, 80.50%,
and 83.75% respectively.

3.2. NTIMIT Results

While the bispectrum does well under the additive Gaus-
sian noise cases, communication lines contain more than
just additive noise. The NTIMIT database is a version of
TIMIT which has been transmitted over telephone chan-
nels. Typical degradations include: bandlimiting, network

noise, echoes, and distortions.
Tables 4 gives the results for a 16 msec frame length us-

ing NTIMIT for training and testing and Table 5 gives the
results for a 32 msec frame length. Unfortunately, the bis-
pectrum does not do as well with the NTIMIT data, possi-
bly due to corrupted phase relations and bandpass �ltering.
The next subsection explores the cepstrum feature for com-
parison to the bispectrum.

No Averaging

No Smoothing Smoothing
jjAj � jBjj jA�Bj jjAj � jBjj jA� Bj

7)28 42.5/8.4 37.5/8.7 40.0/8.2 27.5/7.7

9)45 47.5/8.9 40.0/8.3 42.5/8.9 27.5/7.5

Averaging

No Smoothing Smoothing

jjAj � jBjj jA�Bj jjAj � jBjj jA� Bj

7)28 45.0/7.9 32.5/8.4 50.0/7.4 25.0/6.7

9)45 50.0/9.1 35.0/8.8 55.0/8.5 27.5/7.1

Table 4. Bispectrum results for frame length of 16

msec, 20 speakers, test and train with NTIMIT.

No Averaging

No Smoothing Smoothing
jjAj � jBjj jA�Bj jjAj � jBjj jA� Bj

7)28 25.0/8.0 25.0/7.4 32.5/7.1 15.0/7.3

9)45 40.0/8.6 22.5/8.0 35.0/8.2 22.5/7.2

Averaging

No Smoothing Smoothing

jjAj � jBjj jA�Bj jjAj � jBjj jA� Bj

7)28 32.5/8.5 30.0/8.5 40.0/7.5 32.5/7.3

9)45 42.5/9.5 30.0/8.6 40.0/9.0 27.5/7.6

Table 5. Bispectrum results for frame length of 32

msec, 20 speakers, test and train with NTIMIT.

3.3. Cepstrum

The cepstrum has been very good with lab quality speech,
but has also shown a lack of robustness in noisy environ-
ments. This downfall is especially apparent when the train-
ing conditions and testing conditions are di�erent. The
same test conditions are used again and Table 6 contains
the results using the real cepstrum for the various noise
cases. A Hamming window is used for smoothing. Not only
does the cepstrum su�er a large drop o� under similar noise
conditions, but cross-conditions are extremely detrimental
to the speaker identi�cation success rate. These detrimen-
tal results in cross-conditions are con�rmed in [1], [2]. For
NTIMIT data, the best cepstrum result was 67.5% for a 16
msec window and 32 coe�cients.

4. BISPECTRUM DISCUSSION

Although the preceding sections discussed the bispectrum
feature and looked at how it performed under varying condi-
tions, it is important to analyze the results. The bispectrum
is still relatively simple to compute by using an FFT along



1 1 10 dB w 10 dB c fade
1 10 dB w 10 dB w 10 dB c fade

16 msec, Cepstrum, 16 coe�cients.

100/36.9 9.75/5.9 53.0/8.0 49.25/8.0 41.5/6.9
16 msec, Cepstrum, 32 coe�cients.

100/40.4 8.25/5.3 60.0/8.5 57.25/8.3 45.0/7.4

32 msec, Cepstrum, 16 coe�cients.
100/40.2 5.0/5.8 40.25/8.9 42.0/8.8 44.5/6.8

32 msec, Cepstrum, 32 coe�cients.

100/43.9 5.0/5.7 65.75/9.8 66.75/9.8 47.5/8.3

Table 6. Cepstrum results for frame length of 16

and 32 msec window, 20 speakers, various noises.

with computing the triple product X(�1)X(�2)X
�(�1+�2).

Of course, smoothing and averaging the bispectrum would
also increase the amount of computations. The di�culty
with using HOS for speaker identi�cation is conicting re-
quirements: HOS need longer data lengths for consistent
estimates, yet speech frames need to be short to maintain
stationarity assumptions.
In theory, the bispectrum of a Gaussian noise process is

zero. Since the bispectrum is estimated with �nite data,
Gaussian noise does e�ect the performance although the
bispectrum did a very remarkable job for the Gaussian noise
case.
The goal of the bispectrum was to capitalize on nonlin-

earities, phase coupling, and deviations from normality that
may be occurring in speech. It is possible that the bispec-
trum is using all of these and is a continuing point of re-
search. In [7], research indicates that self-phase coupling is
not occurring in speech signals.
The method proposed here can be thought of as being

based on an ARMA(p,q) model of a non-Gaussian speech
signal. In [5], HOS-based methods were proposed for esti-
mating a non-Gaussian ARMA(p,q) process. The authors
de�ne a portion of the nonredundant region of the bispec-
tra that can be used to uniquely estimate general (non-)
causal and (non-) minimum phase ARMA signals. Thus,
the bispectrum method proposed here is similar to a near-
est neighbor classi�er for ARMA coe�cients.
Our results do demonstrate that phase was an impor-

tant aspect of the feature. For the TIMIT case, using the
bispectrum phase information always improved the speaker
identi�cation performance. For the NTIMIT case, the am-
plitude and phase information has been corrupted and using
the phase information was always detrimental.
Although, the bispectrum feature does well in controlled

noise environments, using NTIMIT data exposes some
weaknesses. The bandpass nature of the telephone removes
formants below 300 Hz. Thus, the bispectra of the TIMIT
and NTIMIT data may be signi�cantly di�erent.

5. SUMMARY

The stated goal of this research was to investigate the bis-
pectrum as a robust feature to be used for speaker identi-
�cation. Results were compared to the cepstrum due to its
widespread use and success in speaker identi�cation. The
goal was not to discover which techniques gave the best re-

sults using clean data, but instead to know which features
performed the best in varying conditions. While the cep-
strum does the best under clean conditions yielding a 100%
speaker identi�cation success rate, its performance falls o�
sharply in varying conditions with cross-conditions being
the most di�cult for the cepstrum.
The bispectrum feature came from the nonredundant re-

gion. By averaging and smoothing, the bispectrum did very
well for additive Gaussian noise. Even in the di�cult con-
dition of training in clean data and testing in noise, the
overall success rate only dropped 4% from 92.5% to 88.5%.
The other noise cases of training and testing with white
Gaussian, colored Gaussian, or multiplicative noise yielded
results of 82.50%, 80.50%, 83.75% respectively. These are
all excellent results compared to other published research.
However, the bispectrum did not hold up as well when
the training and testing were conducted with the NTIMIT
database possibly because phase relations were distorted
via the communication systems and formants below 300 Hz
were removed.
Additional research is planned using speech from other

communication systems that do not bandlimit the signal
as severely as the telephone channel. Di�erent classi�ers
should be used in an e�ort to improve on these features
and increase robustness. Plus, other techniques such as
channel normalization or frequency warping may be of ben-
e�t. A larger speaker set should also be used to verify the
usefulness of the bispectrum feature.
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