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ABSTRACT*

The development of a robust speaker recognition

system obtained through the joint use of acoustic

array processing and spectral normalization as input

to a Gaussian Mixture Model speaker recognition

system is described in this paper. Results obtained

with these techniques have been reported previously

by the authors [10], but operational problems appear

if extensive testing with different configurations and

testing conditions are intended. In this paper, we

describe an open system that has been developed to

cope with this problem. The number and geometry of

the microphones, the time delay estimation method,

the array processing structure and the spectral

normalization technique together with the room size,

noise type and SNR are some of the options that can

be easily changed. It will also allow testing with real

multichannel databases and any new algorithm can

easily be incorporated to the system.

1. INTRODUCTION

The use of microphone arrays as input stage to

speech/speaker recognition systems have been shown

very effective in reducing the effects introduced by

noise and reverberation [1]. However, the array

introduces a filtering effect that is needed to

compensate. The baseline system we have designed

used the switched array structure described in [2] as

input to the parametrization stage, where a spectral

normalization technique was applied. There are

several succesful techniques described in the

literature to compensate for the channel effects [3],
from which we have selected two of them, namely

CMN and RASTA, to test our system under noisy

and reverberant conditions. The speaker

recognitions system works with Gaussian Mixture

Models [4], who have been shown a robust model of

the speaker characteristics [5].
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Several encouraging results have been reported

by the authors [10], showing the effectiveness of this

approach. However, our system was developed

�cutting and pasting� previous smaller systems as the

room simulation and the acoustic array processing

softwares, running even in different platforms. As we

can easily observe, this situation made difficult to

reconfigure the system for any different structure or

algorithm. In order to avoid this problem and to

allow extensive testing of different geometrical

structures, several array processing and spectral

normalization techniques, or even other speaker or

speech recognition algorithms, a new system has

been developed, allowing us to easily modify any

parameter of the system, evaluate new algorithms or

testing in other acoustical environments. In this

way, the room simulation software has been

completely reprogrammed following [6], improved

time delay estimation has been incorporated through

the (optional) use of interpolation/decimation and

coherence based delay estimation [7], and other

array processing techniques as [8] are being added to

the system.

2. BASELINE SYSTEM

2.1. Description

A full description of the baseline system we have

used can be found in [10], which we can see in figure

1. The array structure is that described in [2], where

the adaptation of a two stage system is switched

with a speech/pause detector. The first stage is that

involved with the beamforming of the array, and is

readapted when speech is present. When no speech

is detected, the delay estimates are not changed and

the adaptive filters coefficients are readapted, acting

as adaptive noise cancellers. The time delay

estimates applied to each channel are estimated

through temporal crosscorrelation between the

corresponding channels, with a plausibility check of

that result to avoid obviously incorrect estimations,



such as rapid movements of the speaker. The

adaptive filters work under a conventional LMS

algorithm, while the speech/pause detector is a very

simple one based on two underestimated thresholds

over the short time energy, where no adaptation is

accomplished when neither speech nor pause is

clearly detected. The acoustic characteristics and

capabilities of the array are determined by the

election of the number of microphones involved, and

their position. According to the intention of having a

rather simple array, we decided to work with a

broadband linear array of 4 microphones equally

spaced 10 centimeters one from each other (our

maximum frequency considered is 4 KHz). This of

course has it limitations, but the linear effects

introduced are expected to be minimized at the

spectral normalization stage of the recognizer.

Figure 1:  Graphical representation of the baseline

speaker recognition system

The spectral normalization techniques used at

the output of the array structure are the well known

Cepstral Mean Normalization (CMN) and RASTA

processing [3], which have been shown effective

compensating for the linear effects introduced in the

channel. The speaker recognition system models the

speaker characteristics with a one state model per

speaker with a discrete set of gaussian mixtures

(M=8, M=16 or M=32) corresponding to the

probabilistic distribution of the LPCCepstrum

vectors obtained from the speaker database

described below.

2.2. Experiments

2.2.1. Speaker Database

The speech data have been extracted from the

DIAC2 speaker database, recorded at DIAC-EUIT

Telecom. UPM, consisting in several minutes of

unconstrained speech from each one of 25 male

speakers, recorded with a high quality close talking

microphone in a quiet studio (SNR>30 dB). The

database has been labeled as speech/silence by direct

observation and listening of the files.

2.2..2. Multipath propagation in reverberant

rooms

The impulse response between any two points of a

room is simulated in a computer through the image

method, according to the acoustic ray theory [6],

choosing the form, dimensions, absorption

coefficients of the walls, and maximum reflection

order. In this experiment, we choose a room of 6x4x3

meters, placing the speech source at about 1.5

meters of the array (and about 30º off-axis), and the

noise source (white noise) at the other side of the

room, at about 4.5 meters (about -15º off-axis). We

then calculate the 8 impulse responses from each of

the two sources to the four microphones of the line

array, equally spaced 10 cm. These impulse reponses

will be used to convolve and sum the database

speech with the white noise, obtaining in each case

the four channel inputs to the system.

2.2.3. Training and testing

We train our 25 male speaker models in clean

conditions (without noise or reverberation) with 14

seconds of  actual speech (silences removed) per

speaker from the speech database, with various

values of M, the number of gaussian densities. This

process is repeated when the CMN or RASTA models

are to be used, obtaining three types of 'clean' models

(no processing, CMN and RASTA).  In the testing

stage, we artificially generate the input signal to

each of the microphones adding two convolutioned

signals (one for the speech and another for the noise

with their respective impulse responses) at two

different SNR, measured as the ratio between the

average energy at speech frames to that at noisy

frames, where the noise source is white noise. We

test the system with 30 miliseconds LPCCepstrum

vectors from 10 overlapping segments of  5 seconds

in 4 different situations corresponding to the

different stages in the processing (clean speech,

input to one microphone of the array, beamformed

signal, and output signal from the array processing

system). The recognized speaker is that of the

highest output probability without any type of

postprocessing.

2.3. Speaker Identification Results

When the system recognizes the clean speech

segments from the database (SNR>30dB) with the

clean models (original, CMN or RASTA), and no
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room simulation is performed, recognition rates

above 96% are obtained for any value of M (8,16 or

32).  The system capabilities have been tested at two

different input SNR (5 and 15 dB). The following

table and graph shows  the results obtained for input

SNR=15 dB and M=8, the number of gaussian

mixtures in each speaker model.

SNRin = 5 dB

M (gauss. mix.) = 8

Normalization: None CMN RASTA

Microph. #1 64.0 80.0 68.4

Beamformed 92.0 97.0 86.4

Output 96.0 97.0 86.4

Table 1: Speaker recognition results for M=8 and input
SNR=15 dB
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Figure 2: Graphical representation of the results shown

in table 1

3. THE PROCAR SYSTEM

In this section, we will describe the objectives

aimed with the design of this system (whose name

comes from �array processing� in spanish), its

internal structure and we will have a brief overview

of the options it has available up to date.

When using and improving the baseline system

described in the previous section, we saw several

drawbacks due to its closed structure so when we

wanted to modify the system, we had to build a

whole new system from the previous pieces. In order

to cope with this problem, and observing that we

were spending more time changing the system than

obtaining new results, we decided to build a new

open system, able to incorporate any new algorithm

in any of the phases of the processing, running in a

single platform, and the most important of all,

making possible to run a whole experiment from the

very beginning to the end with a single script, or a

set of them.

The Gaussian Mixture Model speaker recognizer

we are using is running over HTK [9] on a UNIX

workstation, and the DIAC2 speaker database is

bandpass filtered and recorded in SUNAU8 files (8

Khz, µ-law). So we decided to develop the whole

system on a UNIX environment, reprogramming the

room acoustics software and the array algorithms

previously implemented in a PC platform.

Figure 3: Modular description of the ProcAr system for

extensive testing under different conditions and/or

algorithms

We can see the structure of the system in figure

2. It is designed in a fully modular way, where each

of the modules can be configured, suppresed or

combined with other stages in a single one. The files

format is the same across the whole system (HTK),

which is a great advantage over the previous system.

Any new test over new acoustic conditions, new

databases (multichannel recorded or simulated), or
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different algorithms in any of the stages can easily

be run simply modifying the configuration scripts.

Even new tasks, as speech recognition in noisy and

reverberant conditions can be easily incorporated to

the system.

Some of the routines have been completely

reprogrammed, as the room acoustics software. The

room transference function between any two points

of a room is estimated following the algorithm

described in [6]. We can see in figure 3 three

examples of the same transference function between

two points estimated with 512, 1024 and 2048 points

respectively (64, 128 and 256 miliseconds), which can

be used to study the effect over the recognition

results of the transference function length on

simulated data when comparing with real data.
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Figure 4: The transference function between any two

points of a room is estimated for different functions

lengths (64, 128 and 256 miliseconds) with the new

room acoustics simulation software

Several options  are now available in the system,

as correlation or coherence based time delay

estimation, delay and sum beamforming, Griffiths-

Jim or switched Griffiths-Jim structures [2], and

others are being incorporated, as processing based in

the decomposition in minimum-phase and all-pass

components [8].

4. CONCLUSION

In this paper we have described a robust speaker

recognition system working in noisy and reverberant

conditions. The joint use of acoustic array

processing, coping with the noisy and reverberant

speech, and  spectral normalization compensating

the filtering effects introduced in the array structure

has been shown useful trying to get a robust system.

Encouraging results have been obtained, but a new

software tool had to be designed to allow extensive

experimentation with different algorithms,

configurations and acoustic conditions.

The structure and philosophy of this tool is

reported in this paper, noting the ability of the

system to incorporate new algorithms or reconfigure

the system to perform new experiments.
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