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ABSTRACT*

Acoustical mismatch between training and testing

phases induce degradation of performance in automatic

speaker recognition systems [1,2]. Providing robustness

to speaker recognizers has to be, therefore, a priority

matter. Robustness in the acoustical stage can be

accomplished through speech enhancement techniques

as a prior stage to the recognizer. These techniques are

oriented to the reduction of the impact that acoustical

noise produces on the input signal [3,4]. In this paper,

several spectral subtraction-derived techniques are

used to enhance single-channel noisy speech. Other

perspectives, based in dual-channel (adaptive filtering)

and multi-channel (microphone arrays) processing are

also presented as optimal solutions to speech

enhancement needs. A comparative analysis of the

proposed techniques, with different types of noise at

different SNRs, as a pre-processing stage to an ergodic

HMM-based speaker recognizer, is presented.

1. INTRODUCTION

The identification of the talker is a growing necessity

in many fields of application of speech technologies,

specially within the framework of security (remote)

applications. A mismatch between training and

testing conditions induces a severe degradation in

the performance of those systems. This question has

restrained the development of real-world non-specific

applications, as testing conditions may be unknown

during the training process, done under ideal

laboratory conditions.

Providing robustness, that is, reducing the

degradation of performance due to the mismatch

between phases, can be accomplished, in a general

manner, in three different stages: i) the acoustical

stage, giving rise to speech enhancement techniques

that may improve the SNR of the input signal, ii) the

parametric stage, by means of parametric

representations of speech characteristics which may
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exhibit immunity to the noise source and iii) the

modeling stage, combining adequate models of noise

and clean signal in order to recognize noisy speech.

In this paper, a wide analysis of single (section 2)

and multi-channel (section 3) techniques providing

robustness in the acoustical stage to ergodic HMM-

based speaker identification systems (section 4) is

presented, leading to some relevant conclusions

(section 5).

2. SINGLE-CHANNEL SPEECH

ENHANCEMENT TECHNIQUES

Many applications (telephone-based, pre-recorded

samples, etc.) apply to situations in which a unique

acquisition channel is available. When the noise is

stationary and speech activity can be detected,

spectral subtraction (SS) is a direct way to enhance

noisy speech [5], giving rise to what from here on are

called single-channel enhancement techniques.

2.1. �Classical� Spectral Subtraction Technique

In the power spectral density domain, we may

assume, in order to accomplish the speech

enhancement process, that the power spectral

density function of the signal contaminated with

incorrelated noise is equal to the power spectral

density of the signal plus the power spectral density

of the noisy process: however, this is only true in a

statistical sense. Anyway, for the short-time spectral

power function, we may suppose it as a reasonable

approach, leading to a simple an direct way of

subtracting noise from noisy speech.

Being Ri ( )ω 2
, Yi ( )ω 2

and $ ( )Xi ω
2
, respectively, the

power spectral estimator of the noisy process, the

power spectral function of the input signal for the i-

th analysis frame, and the power spectral estimator

of the enhanced signal for the i-th analysis frame,

the spectral subtraction process is accomplished

through the equation:
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where the phase function is adjusted directly in

the enhanced signal from the noisy input signal. As

it can derived from the upper part of (1), the spectral

subtraction method can lead to negative values,

resulting from negative differences between the

noise estimator and the actual noise value. To cope

with this problem, negative values must be set to

zero, giving rise to the well-known �musical noise�

effect, consisting in sudden spectral spikes. This

kind of noise causes an annoying perception of the

enhanced speech and, therefore, it must be corrected.

2.2. Spectral Subtraction with Oversubtraction

Model

In order to correct the appearance of the �musical

noise�, it was proposed [6] to use an oversubtraction

model for the noise, given by:
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where α>1 minimizes the appearance of negative

values that generate spectral spikes, and 0<β <<1

sets an spectral flooring which reduces the

perception of musical noise. The optimal value for α
can be set as a function of the SNR, as high SNR

frames need less compensation that low SNR frames.

2.3. Non-Linear Spectral Subtraction

Non-Linear Spectral Subtraction (NSS) approach [7]
is based in the combination of two different ideas: i)

The use of an extended noise model, with an

estimator of the noisy process and an

oversubtraction model, and ii) a non-linear

implementation of the subtraction process, taking

into account that the subtraction process must

depend on the SNR of the spectral components of

each analysis frame, in order to apply less

subtraction with high SNRs and vice versa.

A generic function [[ ]]Φ ρ ω α ω ωi i iR( ), ( ), ( ) will be

necessary for the extended model of noise; this

function will depend on the noise estimator, on the

spectral-dependent oversubtraction factor, α i (ω) ,
and on the SNR of each spectral component of the

analysis frame, ρ i (ω) , that can be calculated as:
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being:

Y Y YSNR i SNR i SNR i, ( ) ( ) ( ) ( )ω λ ω λ ω== ++ −−−−1 1 (4)

The function Φ is an arbitrary non linear function

that encloses the subtraction process, taking into

account the SNR of each spectral component, with

upper and lower boundaries:

[[ ]]R R Ri i i i i( ) ( ), ( ), ( ) ( )ω ρ ω α ω ω ω≤≤ ≤≤ ⋅⋅Φ 3 (5)

2.4. Sub-band Non-Linear Spectral Subtraction

Sub-band NSS (SB-NSS) consists basically in the

application of the non-linear spectral subtractor in

1/3 octave sub-bands, instead of using an

oversubtraction factor for each spectral component

[4]. The equivalent level in the actual analysis band

is derived from

B fL
L

i
i

N
pi== ⋅⋅ ⋅⋅









==
∑∑10 1010

10

1

log / ∆ (6)

where ∆fi  is the spectral resolution used, and N

the number of components in the actual analysis

band. 21 standard 1/3 octave bands have been used,

from 31.25 Hz to 4 kHz.

This procedure reduces considerably the

computational load required for the NSS procedure

as the spectral components needed to accomplish the

NSS process are now reduced to 21 values.

3. MULTI-CHANNEL SPEECH

ENHANCEMENT TECHNIQUES

If we are able to have several input channels to our

application and we may control the arrangement of

them, we can take advantage of the availability of

multiple signal inputs to our system using multi-

cannel speech enhancement techniques, being the

most direct of these: i) the use of noise references in

an adaptive noise cancellation device, ii) the use of

phase alignment to reject undesired noise

components, or even iii) the use of phase alignment

and noise cancellation stages into a combined

scheme [8].

3.1. Adaptive Noise Cancellation

Adaptive noise cancellation is a powerful speech

enhancement technique [9] based in the availability

of an auxiliary channel, known as reference path,

where a correlated sample or reference of the

contaminating noise is present. This reference input

will be filtered following an adaptive algorithm, in

(2)



order to subtract the output of this filtering process

from the main path, where noisy speech is present.

The LMS algorithm is a practical implementation

of this adaptive process that permits us to find an

approximated solution to the optimal filtering

process. It has the following formulation:

w w yn n ne n++ == ++ ⋅⋅ ⋅⋅ ⋅⋅1 2 µ ( ) (7)

being w the vector of coefficients of the filter, y the

vector reference signal, e(n) the error signal and µ
the adaptation constant that controls the stability

and the speed of convergence of the adaptive

procedure.

The process of adaptive filtering is optimal in the

sense that error signal e(n) guides the convergence of

the whole process. Nevertheless, in practical

implementations, it is very difficult to find a speech-

free noise reference, and to obtain sufficient degree

of correlation between reference and contaminating

noises.

3.2. Multisensor beamforming

Multisensor beamforming through microphone

arrays [10], derived from radar and sonar

applications, can be implemented in a variety of

ways, being delay-and-sum beamforming the most

direct approach. The underlying idea of this scheme

is based on the assumption that the contribution of

the reflections is small, and that we know the

direction of arrival of the desired signal. Then,

through a correct alignment of the phase function in

each sensor, the desired signal can be enhanced,

rejecting all the noisy components not aligned in

phase. So, for the m-th channel of the system we will

have:

y n x n r nm m m( ) ( ) ( )== −− ++τ (8)

where x(n) will be the desired signal, τm the delay

applied to the input signal for a correct phase

alignment, rm(n) the noise present in the channel and

ym(n) the available input of this channel.

The overall output of the multisensor system will

be obtained by adding all contributions, with

adequate compensating delays in each of them,

giving:
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This delay and sum beamforming process is a

very robust scheme. The delay estimation errors

reduce the enhancement process in terms of SNR,

although inducing only a low degree of distortion.

4. SPEAKER IDENTIFICATION RESULTS

4.1. Overall System Description

The baseline speaker identification  system used [4]
is based in ergodic HMMs, 8 states and 8 mixtures

per state, trained with 60 sec. of read clean speech

(SNR>30 dB) for each of the 25 male speakers

involved. Speech has been acquired at 8 kHz.,

encoded with 8 bits and µ-law, and bandlimited in

the range 200-3400 kHz. in order to obtain

telephone-like quality.

The training phase has been carried out without

acoustical degradation, preserving the original SNR

(>30 dB). For the testing phase, noise has been

artificially added to clean speech; three kinds of

noise has been used for testing: white gaussian

noise, real fan noise extracted from a computing

system, and tonal noise, consisting of tones at 250,

500, 1k, and 2k Hz.; these noises have been added to

speech at 20, 15, 10 and 5 dB SNR. Each one of the

pre-processing enhancing techniques proposed in

sections 2 and 3 have been comparatively used. In all

cases, the parametric vector used is formed by 10

LPCC coefficients, discarding c0.

4.2. Single-Channel Speaker Identification

The single-channel enhancement techniques described

in section 2 (namely, �Classical� Spectral Subtraction,

Spectral Subtraction with Oversubtraction model, Non-

Linear Spectral Subtraction and Sub-Band Non-Linear

Spectral Subtraction) are applied as an acoustical pre-

processing stage to the speaker recognizer described

in 4.1. Table 1 shows the results obtained.

Single-Channel Enhancement Techniques
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Table 1: Speaker ID rates (%), when No Enhancement (NE),

�Classical� Spectral Subtraction (S1), Spectral Subtraction

with Oversubtraction Model (S2),  Non-linear Spectral

Subtraction (S3), and Sub-Band Non-Linear Spectral

Subtraction (S4) are used, with white (W), fan (F) and tonal

(T) noises at the stated SNRs.



4.3. Multi-Channel Speaker Identification

The two multi-channel speech enhancement

techniques proposed in section 3 (namely, the

adaptive noise canceller and the delay-and-sum

beamformer) have been implemented in order to

obtain comparative results with regard to single-

channel enhancement techniques.

The adaptive noise cancellation system (described

in 3.1.) has been simulated through the impulse

response of a room using a geometrical approach to

room acoustics design. These responses had been

used to filter speech coming from one point of the

room and noise coming from another point of it.

Consequently, noise has been added to reverberant

speech in order to obtain the required SNR, and this

noisy reverberant signal has been used in the main

path. In the reference path, the original noise signal

has been used.

For the speech beamformer (described in 3.2.), a

low-complexity four microphone linear array has

been used, simulating the impulse responses for

noise and speech entering each one of the

microphones employed. This artificial procedure has

permitted to obtain directly the delay corresponding

to each of the four paths involved in the system.

Results on each multi-channel approach, regarding

the kind of noise used, are presented in Table 2.

Multi-Channel Enhancement Techniques
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A
A
A
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A
A
A
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Table 2: Speaker ID rates (%), when No Enhancement (NE),

Adaptive Noise Cancelling (ANC) and low-complexity

Microphone Array Processing (MA) are applied, with white

(W), fan (F) and tonal (T) noises at the stated SNRs.

5. CONCLUSIONS

The baseline results (NE) in Tables 1 and 2

demonstrate that acoustical mismatch among training

and testing phases degrades outstandingly speaker

identification results. On the other hand, speaker ID

results remarkably improve when enhancement

techniques are applied as pre-processing stages.

Single-channel enhancing techniques produce good

recognition results when acoustical degradation

stands over 10dB SNR, specially for real fan and

tonal noises, though introducing some level of

distortion on the recovered speech.

Multi-channel speech enhancement systems

produce excellent results for moderate and high

noise levels (SNR>5 dB). Adaptive cancellation

outperforms any other technique, with excellent

results even for SNR=5dB. Anyway, this technique is

not completely realistic, as reference path must be

signal free for real applications, and the correlation

between paths restricts noise cancellation process.

On the contrary, low-complexity array processing

is a very promising technique, as excellent results

can be obtained for SNR>5dB with not much

implementation constraints in a very realistic

manner. For practical systems, the time-delay

estimation of each path is the main problem to be

solved, knowing that the estimation error will only

affect on the SNR obtained, without inducing

additional distortion.
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