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ABSTRACT

A robust, task independent spoken Language Identi�cation

(LID) system which uses a Large Vocabulary Continuous

Speech Recognition (LVCSR) module for each language to

choose the most likely language spoken is described. The

acoustic analysis uses mean cepstral removal on mel scale

cepstral coe�cients to compensate for di�erent input chan-

nels. The system has been trained on 5 languages: English,

German, Japanese, Mandarin Chinese and Spanish using a

subset of the Oregon Graduate Institute 11 language data

base. The �ve language results show 88% correct recogni-

tion for 50 second utterances without using con�dence mea-

sures and 98 % correct with con�dence measures without

the robust front end. The recognition rate is 81 % correct

for 10 second utterances without con�dence measures and

93 % correct with con�dence measures without the robust

front end. Adding the robust front end improves the recog-

nition rate approximately 3 % on the short utterances and

1 % for the long utterances. The best performance has been

obtained for systems trained on phonetically hand labeled

speech.

1. INTRODUCTION

In the future, Language Identi�cation (LID) systems will

be an integral part of telephone and speech input computer

networks which provide services in many languages. A LID

system can be used to pre-sort the callers into the language

they speak, so that the required service will be provided in

the language appropriate to the talker. Examples of these

services include, travel information, emergency assistance,

language interpretation, telephone information, buying ser-

vices, banking and stock trading. Since there are large num-

bers of non-English talkers in the US population due to im-

migration, there is a need to o�er multi-language capability

even within the US. International markets and tourism add

to the desirability of o�ering services in many languages.

The languages of the world di�er from one another along

many dimensions which have been codi�ed as linguistic cat-

egories. These include, phoneme inventory, phoneme se-

quences, syllable structure, prosodics, lexical words and

grammar. Therefore, we hypothesize that an LID system

which exploits each of these linguistic categories in turn will

have the necessary discriminative power to provide good

performance on short utterances.

This paper is divided into �ve sections. First, past work is

discussed. Second, the basic phoneme recognition system

is described. Third, the architecture of the LVCSR system

is discussed. Fourth, details of training the system for each

language are given. Then, the LID results for the system

using LVCSR sub-systems are discussed. These show that

the more complete language modeling which the LVCSR

system provides gives the best performance. Our original

method for computing the probability an acoustic input cor-

responds to a certain language, neglected the probability of

the acoustic sequence within the language which appears in

the numerator due to Bayes' Rule. This was estimated and

improved the performance greatly. Finally the results of

using mean cepstral subtraction to make the system more

robust to di�erences in the telephone channel are presented.

2. PAST WORK

Neuburg and House [2] used an ergodic Markov model of

sequences of 5 broad phonetic categories (stop consonant,

fricative consonant, non-vocalic sonorant, vowel and silence

to identify 8 languages with 100% accuracy using phonetic

hand labels for input, when they tested on the training data

(because of the scarcity of data for the experiment). The

system was designed to have a variable number of states

(from 2 to 5) to model each language. A version of our

system also gets 100% correct language identi�cation using

automatically obtained �ne phonetic labels and a trigram

phonemotactic model (corresponding to a 3 state model in

the Neuburg and House system) for �ve languages when

tested on training data.

Recently, there has been much interest in phonetic mod-

eling of speech for language identi�cation. Muthusamy

et al developed a language identi�cation system based on

broad phonetic classes and neural network classi�ers [3].

Muthusamy [4] also collected an 11 language telephone

speech database at Oregon Graduate Institute which be-

came the standard training and testing database for a se-

ries of U.S. Government sponsored language identi�cation

tests which were administered by the National Institute for

Standards and Technology (NIST). These tests provide a

way of measuring the relative performance of many systems

incorporating di�erent methods of spoken language identi-

�cation. The results reported in this paper are obtained

from the Spring 1994 training and test data for these tests.

In the past three years, a number of researchers [5, 6, 7] have



been developing systems which �rst recognize phonemes us-

ing HMM phoneme modeling and then use a phonemotac-

tic model of phoneme sequences allowed within each lan-

guage to identify the spoken language. Our baseline sys-

tem described in [7] uses Continuous Density second order

Variable Duration Hidden Markov Model (CVDHMM) to

achieve the phoneme recognition based on context condi-

tioned phonemes (called tri-phones in the literature) and

trigram phoneme sequence models (phonemotactic models).

The other LID systems [6, 5] mentioned above, use con-

text independent �rst order Markov models for phoneme

recognition with bigram phonemotactic models. For lan-

guages with Consonant-Vowel-Consonant (CVC) syllable

structure, the trigram models do a very good job of mod-

eling the most frequent words, which are usually mono-

syllabic and hence, should help in discriminating these lan-

guages more e�ciently than bigram phonemotactic models.

On the other hand languages with Consonant-Vowel syl-

lable structure would be more e�ciently modeled by the

bigram phonemotactic models. The languages studied rep-

resented a mixture of syllable structures, so that the trigram

phonemotactic models seem to provide an advantage.

This paper shows that full LVCSR leads to better LID

performance, than the same system using trigram phonotac-

tics, and language speci�c phonemes alone. Another system

developed at Dragon Systems [14, 15] also uses full LVCSR

for LID and performs very well on three languages. Devel-

oping automated methods for creating LVCSR systems for

new languages would allow these performance advantages

to be realized for language identi�cation without extensive

human e�ort.

3. DESCRIPTION OF THE PHONEME

RECOGNITION SYSTEM

The phoneme recognition system was developed at Bell

Labs for English by A. Ljolje [1]. This phoneme recog-

nizer is based on a second order ergodic CVDHMM. The

ergodic HMM has one state per phoneme. However, the

acoustic model for each phoneme is a time sequence of

three probability density functions (pdf's) with each pdf

representing the beginning, the middle and the end of a

phoneme, respectively. The pdf's are represented as mix-

tures of Gaussian pdf's on the acoustic features which have

been de-correlated. This structure is equivalent to a three

state left-to-right HMM phoneme model. The duration of

each phoneme is modeled by a four parameter gamma distri-

bution function. The four parameters are: (1) the shortest

allowed phoneme duration (the gamma distribution shift),

(2) the mean duration, (3) the variance of the duration, and

(4) the maximum allowed duration for the phoneme. The

shortest allowed duration is equal to the shortest observed

duration in the training data, the mean and variance are

calculated from the training data and the maximum dura-

tion is calculated as the 95
th

percentile of the distribution.

Because the ergodic HMM is second order, the transition

probabilities are the probability of the next phoneme given

the past two phonemes. This is then the trigram phoneme

sequence probability which can be estimated separately. A

diagram of a Second Order Ergodic HMM is shown in Fig-

ure 1.

First Phoneme Second Phoneme Third Phoneme

/i/

/p/

/r/

/s/

Figure 1. The architecture of a second order ergodic

CVDHMM.

3.0.1. Acoustic features

For the baseline system, the speech feature vector con-

sists of 26 features which were chosen from 38 coe�cients

of 12 cepstra, 12 delta cepstra, 12 delta delta cepstra, delta

energy and delta delta energy using a discriminant analysis

method. [9] First all the cepstral coe�cients are computed

using an autocorrelation LPC model with a 20 msec time

window which is shifted by 10 msec per frame. Then the co-

e�cients are de-correlated (rotated to be orthogonal). The

De-correlation is most needed for the cepstral and delta

delta cepstral coe�cients.

For the robust system, the speech feature vector consists

of 38 mel scale cepstral coe�cients, consisting of 12 cep-

stra, 12 delta cepstra, 12 delta delta cepstra, delta energy

and delta delta energy. The means of each cepstral coef-

�cient across the utterance are subtracted from the frame

by frame coe�cients to normalize for di�erences in channel

characteristics. Then the De-correlation is performed as in

the baseline system.

3.0.2. Training phoneme models

The best performance came from training the system

with phonetic hand labels which were available for these

5 languages. The initial models are trained using this data

and the models are re-trained using the segmental k-means

algorithm iteratively until the models converge, in three it-

erations. We speculated that in spontaneous speech many

segments are deleted or severely coarticulated. Training on

the orthography and a text to speech system gives many

extra segments which have not been realized in the speech,

which gives a bad acoustic model for the often deleted

phonemes.



4. LID SYSTEM USING LARGE

VOCABULARY SPEECH RECOGNITION
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Figure 2. The block diagram of the complete LID system

A full LVCSR system is used for language identi�cation.

The block diagram of the LID system is as shown in Figure

2.

The lexical access system uses cascades of weighted �nite

state transducers [10] to do lexical search and grammatical

constraints. The �rst step is a transduction from phoneme

lattices to word lattices. The best path through the �nite

state network provides the most probable word sequence

and the probability, for words in the vocabulary without a

word sequence model. The second transduction is from a

word lattice to a sentence lattice, which obeys the bigram

word grammar trained on the OGI training and develop-

ment test portions of the corpus. The best path though

the resulting sentence lattice is the most probable sentence

given the language model. For language identi�cation, the

subsystems (block 1, 2 and 3 in Figure 2) for each language

are run in parallel for a given speech signal similar to the

base line system described above. The language subsystem

with the highest normalized log likelihood is chosen as the

language of the input speech signal.

5. TRAINING THE LID SYSTEM

The �ve language (English, German, Mandarin Chinese,

Japanese and Spanish) LID system was trained and tested

using the prompted monologue section of the 11 language

speech data base collected by OGI [4]. The training and

test data consists of about 80 and 18 speakers, respectively,

per language. The monologue recording is 50 seconds in

length, including pauses, which yields 35-45 sec of speech.

The acoustic HMM models systems were trained on pho-

netically hand labelled speech.

5.1. Training the Word and language model

For each of the 5 languages, the vocabulary was chosen by

taking every unique word from the prompted monologues

in the training and devtest portion of the OGI 11 language

database. Table 1 below shows the number of words in

the lexicon for each language and their average length in

phonemes. A bigram language model was trained for each

language using the Katz backo� method described in [11].

An attempt was made to add text from newspaper sources

to augment the language model, but this resulted in poorer

performance, because newspaper style is very di�erent from

spoken language.

 Language            # words         average length   
 

 English                2564                7.47  

 Spanish               2014             11.36

German       1844          8.34

 Japanese       1863 7.80

Mandarin       1546 4.07
 

Table 1. Lexicon Sizes for Each Language

5.2. Training the Final Classi�er

The LVCSR LID system has many di�erences in the lan-

guage models. Di�erent languages have a di�erent number

of phonemes, di�erent average word lengths, di�erent word

sequences which may contain high frequency words like par-

ticles and articles. The result of these di�erences is that the

scores from each subsystem has to be normalized relative to

the scores for the other languages. Additive and multiplica-

tive factors have been considered (which for log likelihoods

correspond to multiplicative and exponential factors on the

probabilities). The additive factors seemed to work best,

with the factors trained on the home town section of the

OGI corpus. The language dependent normalizations were

much smaller in the system which normalized by the acous-

tic probability as discussed below.

6. EXPERIMENTAL DETAILS AND RESULTS

The baseline LVCSR system was tested using 1994 LID eval-

uation test set. The system identi�ed the language spoken

an average of 88 % LID rate on �ve languages on the 50 secs

utterances and 81 % on the 10 secs utterances. In Table 2,

the results for �ve languages are shown.

In order to improve the identi�cation rate for the LVCSR

system, a technique which involves normalizing the utter-

ance recognition log likelihood, by the log likelihood of the

best unconstrained phoneme sequence has been tried. This

is similar to the technique used by Rose and Paul [12] for

keyword spotting and by Young and Ward to detect out of

vocabulary words in a large vocabulary ASR system [13].

Later publications refer to this as a con�dence measure, and

is a ratio between the lexicon and grammar constrained best

path probability and the unconstrained acoustic model path

probability through the utterance. It was �rst used for LID



  Length and cond            English         German        Spanish        Japanese      Mandarin
                           
 50 sec  no gram               85 %               90 %             76 %    93 % 94 %    
 50 sec  gram                      95 %       95 %      94 %    97 % 97 %
 50 sec norm       98 %       99 %      96 %    98 % 98 %
 50 sec norm robust       99 %       99 %      99 %    99 % 99 %

 10 sec no gram           81 %       82 %      79 %    83 % 81 %
 10 sec gram       85 %       84 %      81 %    87 % 85 %
 10 sec norm       95 %       96 %      90 %    92 % 90 %
 10 sec norm robust       98 %       97 %      95 %    97 % 95 %

Table 2. Five language identi�cation results.

by Lowe et al. [14]. Further results are reported in Mendoza

et al. [15]. The equation for the recognition of an utterance

in a particular language is

P(Si;Li;Pijx) = P(xj�i)P(�ijWi)P(SijWi)=P(x) (1)

where the P s are probabilities, x is the input speech sig-

nal, �i is the phoneme sequence,Wi is the word sequence,

Si is the set of all possible sentences for language i and Li

is the phonemotactic model of the language i. The term

in the numerator is often considered to be the same for all

the of sentences recognized, and thus neglected. This is no

longer true when we wish to make a comparison between

the output of recognizers for di�erent languages. The es-

timation of this term gives a better estimate of the total

probabilities and thus better performance when comparing

di�erent systems. It may also be possible to allow rejection

of languages not in the set trained. The method we used to

estimate the probability of the acoustic sequence is to run

the phoneme recognizer with equal trigram probability for

all possible phoneme sequences. A better estimate might be

to compute the best acoustic score based on the best match

for all of the Gaussian mixtures in the system. This was

the measure used by Lowe et al. [14] and will be explored

in future work. The present acoustic probability estimate

raises the performance of the system to the �nal best result

of 98 % correct identi�cation for 50 sec and 93 % correct

identi�cation for 10 sec of speech. The results are shown in

Table 2 with the label norm.

7. ROBUST LANGUAGE IDENTIFICATION

The robust system di�ers only in the front end processing.

It produced results which are approximately 3 % better

than the baseline system for the short utterances, 99 % cor-

rect identi�cation for 50 sec and 96 % correct identi�cation

for 10 sec of speech. The results are shown in Table 2 with

the label norm robust. This is probably due to the fact that

the e�ect of the di�erent telephone microphones, telephone

channels and noise conditions are normalized out by using

mean cepstral removal. These techniques have been used

in LVCSR in the past with similar improvements in perfor-

mance. [16] Thus the system appears to be more robust

than the baseline system.

8. CONCLUSIONS

A robust �ve language identi�cation system based on

LVCSR was described. LID results for �ve languages were

best results for the full LVCSR system, with a normalization

or con�dence estimate based on unconstrained phoneme

matches for each language. Mean cepstral subtraction gave

an approximately 3 % performance gain over the baseline

system for the short utterances.
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