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ABSTRACT

In this paper a phonotactic language identi�cation system
that employs a multilingual phone-recognizer with multi-
ple language-dependent grammars to tokenize the spoken
signal into several phone-streams is described. For each
stream an independent set of language models is used to
compute the language scores that are subsequently pro-
cessed by two classi�cation stages. Thus, the system ac-
quires information from both the original-label and the de-
coded-phone statistics. A discriminative weighting method
is applied in the second stage for better distinguishing
between similar languages. A modi�ed language-bigram
model, the so-called skip-gram, that allows exploiting of
a wider phonotactic context without increasing the estima-
tion costs of a standard bigram, is introduced. Measured
on the NIST'95 evaluation set, the described system out-
performs the state-of-the-art phonotactic components that
use multiple recognizers, and is, at the same time, less com-
putationally expensive.

1. INTRODUCTION

Automatic language identi�cation (ALI) is a task of recog-
nizing the language from a spoken test sentence.
Besides other solutions to this problem based on prosody

modeling as well as on phonetic acoustic features [1] there
is an e�cient way to describe a language in a discrimi-
native way - by means of statistical modeling of phonetic
chains (phonotactics). Several contributions have been pu-
blished dealing with the use of phone n-grams, particularly
bigrams, which were shown to be suitable for distinguishing
between languages [2],[4].

In the phonotactic components of most ALI systems, one
or multiple phonetic recognizers are implemented for toke-
nizing the incoming utterance in terms of a certain phone
repertoire, followed by a set of interpolated bigram langu-
age models. Although Zissman and Singer [2] proved that
the modeling of phonotactic constraints in terms of the
phone set of one language is feasible for identi�cation of se-
veral languages, extended systems with multiple language-
dependent recognizers were designed in order to better re-
present the phone repertoire and to improve the overall per-
formance [5],[7].
A somewhat di�erent strategy for applying phonotactic

features combined with acoustic modeling was presented
in [3] and [7]. Here, multiple language-dependent phone-

recognizers processed the utterance, and the resulting acou-
stic likelihoods were taken for the �nal classi�cation.
In both cases, the computational costs were considerable

due to the multiple recognition process.
In the following, a system will be presented based

on a single multilingual phone-recognizer with multiple
language-speci�c bigram models used in the decoding pro-
cess, followed by stream-dependent sets of language models.
This architecture allows a faster phonetic decoding than
with the multiple language-dependent recognizers and ac-
quires information of both the original label statistics and
the decoded-sequence statistics.

2. ALI SYSTEM WITH DOUBLE

BIGRAM-DECODING

The block diagram of the overall identi�cation system is
shown in Fig. 1. In the following subsections a description
of each of the components is given.

2.1. Phonetic Recognizer

An incoming spoken utterance is decoded by an HMM-
based phonetic recognizer with a phone-repertoire broadly
covering six languages (55 phones + 6 non-speech units).
During the Viterbi decoding, M language-speci�c bigram
(transition) probabilities are applied to constrain the trellis
space, which results in obtaining M di�erent phone sequen-
ces (streams) on the output of the recognizer. The bigram
models that are applied within the recognizer are estimated
using manually labelled transcriptions available for the M
languages, thus carrying the information about the original-
label statistics (later on \inner bigrams").

2.2. Language Models

With every phone-stream from the phonetic recognizer a set
of N language-bigram models is connected each exploiting
statistical constraints in the corresponding decoded stream
for a given language (later on \outer bigrams"). Unlike the
inner bigrams, the language models exploit the information
of the decoded-phone statistics. Obviously, there areM dif-
ferent language models for each language Li 2 fL1; :::;LNg.
As the original properties intristic to a language are chan-
ged by the phonetic decoding dependent on the statistical
grammar used, the M language models can be told to de-
scribe phonotactic properties of the language Li in terms of
the M decoder-inner \languages."
As the core of the language models, standard interpolated

bigrams were applied [8] to acquire dependences between
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Figure 1. ALI system overview

neighboring phones. Let A(l) = a
(l)

1 ; :::; a
(l)

T
be the phone-

tic sequence decoded using the inner bigram l. Then, the
phonotatic language score for A(l), given the language Li,
is calculated as:

Sbi(A
(l) j Li) = (1)

=
1

T

(
log Pr(a(l)1 j Li) +

TX
t=2

logB(a(l)
t

j a
(l)

t�1; Li)

)

where B denotes the interpolated bigram model:

B(at j at�1; Li) = (1� �)Pr(at j at�1; Li) + �Pr(at j Li)

with � the interpolation constant.
It is a well-known fact that statistical dependences are

present in a wider context than that of phone pairs in spo-
ken utterances. However, a 2nd-order statistical analysis
(trigrams) is faced with the general problem of lacking ro-
bustness due to sparse data. In order to overcome this
di�culty, and to still capture a wider phonetical context,
a sort of modi�ed bigrams were designed as an addition to
the core language models. Here, the modi�ed bigram is de-
�ned as the a-posteriori probability of a pair of phones not
neighboring immediately but with a time gap between them
(one phone skipped) as illustrated in Fig. 2.
Later on, such modi�ed bigrams are called skip-grams1 .

Skip-grams can be, similarly to standard bigram, inter-
preted as a marginal distribution of the joint trigram-
probability distribution by summing the time-slot t�1 over

1It is obvious that the number of phones skipped can be va-

ried which results in di�erent skip-gram models with an even

wider context. Our experiments, however, did not show further

improvements when using such extended skip-grams.
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Figure 2. 1st-order analysis with one phone skipped

all phones out of the repertoire A:

Pr(at j at�2) = Pr(at j � ; at�2)

=
X

at�12A

Pr(at�2; at�1; at)=Pr(at�2)

(Similarly, summing the time-slot t� 2 would result in ob-
taining the standard bigram).
Skip-gram combined with the standard bigram can par-

tially exploit context information of a phone-triple in a
frame of 1st-order analysis thus not increasing the estima-
tion costs. The interpolated skip-gram score for the test
utterance A(l) is calculated in a manner similar to (1):

Sskip(A
(l) j Li) =

=
1

T

(
log Pr(a(l)1 j Li) +

TX
t=3

logB(a(l)
t

j a
(l)

t�2; Li)

)

and both the standard bigram and the skip-gram scores can
be combined together in an additive way as follows

S(A(l) j Li) = (1 � �)Sbi(A
(l) j Li) + � Sskip(A

(l) j Li)

where the inuence of the skip-gram can be customized by
varying the parameter �.

2.3. Maximum-Likelihood Classi�er

For a test speech signal s(t) having been decoded to M

streams, M scores for each individual language from the
repertoire are computed and put together. The classi�er
makes a maximum decision based on the total language
scores:

L
� = arg max

1�i�N

MX
l=1

S(A(l) j Li) (2)

Alternatively, the two best hypotheses are determined for
later processing in a second stage as described in section 2.4.

2.4. Post-Classi�cation

Optionally, a post-classi�cation method is applied to pro-
cess two best hypotheses output by the ML-classi�er, as
introduced in [9]. Here the goal is to rise the signi�cance of
individual phone-pairs whose probabilities di�er among the
languages in the pair given, while suppressing those having
similar, i.e. less relevant, bigram values. This is achieved
by a discriminative weighting within the scores. As the dis-
similarity measure of two languages m and n in the sense
of phonotactics a delta-matrix was de�ned as:

�
mn = f�mn

ij gi;j =

�
j B(ai j aj ; Lm)�B(ai j aj; Ln) j

Dmax

�
i;j



(With a norm constant Dmax) and used to weight the log-
probabilities in the score for each of the best languages L 2
fLm; Lng:

S
�(A(l) j L) =

1

T

TX
t=2

�
�

mn

at;at�1

�


� logB(at j at�1; Lk)

( is an additional degree of freedom used to control the
impact of �).
Based on the new scores S�, the rank-list of best hypo-

theses may be reordered. Of course, more than two best
hypotheses can be taken into account by the post-classi�er
by processing them in pairs. Extensive experiments have
shown, however, that the processing of the two best scores
is su�cient for a nine-language-task.
In the framework of the double bigram-decoding system

the scores S� are re-calculated in each stream in isolation
�rst and then added together as in (2) again. If the score
sequences computed in the �rst stage are stored they can
easily be used for computing the new weighted scores. In
this case, the additional computation costs coming along
with the second-stage classi�cation are negligible.

3. DATABASE AND PHONE RECOGNIZER

Up to nine languages from the OGI Multi-Language Tele-
phone Speech Corpus [10] were used for training and system
development, and the NIST2 test set from March '95 invol-
ving nine languages was taken for the system evaluations.
Twelve Mel-warped cepstral coe�cients, energy as well

as their �rst derivatives, were extracted from the signal wa-
veforms and the cepstral-mean substraction was carried out
to suppress channel-dependent feature components.
For the phone-decoder an HMM-based phonetic recogni-

zer was designed by means of the HTK software V2.0. The
usual tri-state left-to-right model architecture for each in-
dividual HMM applied. 55 selected phonetic plus 6 non-
speech HMM's (context-insensitive) were trained on speech
signals in six languages, for which manually labelled and
segmented transcriptions were available. A total number
of 180 \stories-before-tone" (each 45 secons long) served as
the data to train the HMM parameters.
For the estimation of the inner grammars, 50 original-

label transcriptions in each of the six languages were used.
These probabilities weighted the transitions between indi-
vidual monophone HMM's during the Viterbi decoding.
Further on, 50+10 utterances (45s-stories) in each of the

nine languages were decoded by the phonetic recognizer (al-
ternatively with or without applying the inner bigrams) and
the resulting sequences served as data for training the outer
language models as well as for tuning the system parama-
ters (� and ). The data did not overlap with the set used
for phonetic training.
The NIST test set (originally recorded in �-law format)

�rst was converted into linear 16-bit PCM and then pro-
cessed by the feature extractor described above. The test
data in each language consists of 20 45-second phone calls
(spontaneous monologues) and ca. 80 10-second excerpts of
them as speci�ed in the NIST guideline.
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Error Rate
Con�guration 10s 45s

Null-Grammar 28.8% 15.0%
Six Inner Bigrams 18.4% 5.0%
+ Skip-Grams 16.3% 5.0%

+ Post-Classi�er (2-best) 15.2% 4.2%

Table 1. Error rates on 10/45s utterances in the

six-language-task (NIST'95)

Error Rate
Con�guration 10s 45s

Null-Grammar 38.7% 19.4%
Six Inner Bigrams 27.6% 13.3%
+ Skip-Grams 26.3% 13.3%

+ Post-Classi�er (2-best) 25.8% 12.2%

Table 2. Error rates on 10/45s utterances in the

nine-language-task (NIST'95)

4. EXPERIMENTS

Performance of the proposed system was tested using a clo-
sed set of six and nine languages. In order to assess the
e�ciency of the double-bigram-decoding method, the con-
ventional null-grammar decoding combined with a single set
of language models (e.g. discussed in [2]) was examined as
well.

4.1. Six-Language-Task

The following languages were taken for evaluation in the
six-language-task: English, German, Hindi, Japanese, Man-
darin and Spanish3 . The same languages also served as the
six inner bigram languages due to the availability of their
label-transcriptions in the OGI corpus.
Table 1 shows the resulting error rates for the system with

six inner bigrams combined with language models consisting
of 1) standard bigrams or 2) standard- and skip-grams, and
of the second stage post-classifying two competing hypo-
theses computed in the �rst stage. For comparison, the
performance of a conventional phonotactic component with
null-grammar decoding is given also.
A consistent improvement from 28.8% to 18.4% with the

10s-signals and 15% to 5% error rate for the 45s-signals
could be achieved with the proposed double-bigram-system.
By using the additional skip-grams within the language mo-
dels, the error rate further decreased with the 10-second
utterances. For longer utterances the skip-grams were inef-
fective which can be explained by a high robustness of the
standard bigram scores for such long sequences. Finally, a
certain number of hypotheses misclassi�ed in the �rst stage
could be corrected by the post-classi�er thus reducing the
error rate to 15.2% and 4.2% for 10s- and 45s-long test ut-
terances.

4.2. Nine-Language-Task

Similar performance gains of the individual system con�gu-
rations can be seen in Table 2 for the the nine-language-task

3Also chosen in the NIST evaluations in March '94



in which six languages listed above plus three other langua-
ges (French, Tamil and Vietnamese) were involved. In this
case, the inner-bigram decoding, together with skip-grams
and the post-classi�er, brought an improvement from 38.7%
to 25.8% and from 19.4% to 12.2% for the 10-second and
the 45-second utterances respectively.

5. DISCUSSION

Results obtained in the experiments clearly prove the ef-
�ciency of the double-bigram architecture. Measured on
the same NIST'95 test set data, the system outperforms
the state-of-the-art phonotactic system with six language-
dependent recognizers described in [6], and, at the same
time, allows a faster, synchronous Viterbi decoding due to
the common phone-set. As the phonetic decoding repre-
sents the vast part of the overall computation costs this
saving is viewed as a considerable advantage. Also, less
speech data are necessary for training the single HMM set,
as opposed to the full training of six separate recognizers.
As expected, aquiring a wider phonetical context, even

though by means of 1st-order statistics only, contributes
to a better performance of standard bigrams. Although,
for long test sequences the e�ect of the skip-grams seems
to be rather inferior. Moreover, an increased sensitivity to
phone-errors could have negatively inuenced the modeling
potential of skip-grams as the probability of an erroneous
deletion or insertion within a triple is higher than that of a
phone-pair. Without regard to storage, the skip-grams do
not require any additional data for being estimated.
Previously introduced in [9], in connection with a null-

grammar decoder, the post-classi�er proved to be feasible
for the double-bigram system as well, whereby not increa-
sing the computation costs considerably. Because not all
language pairs are suitable for the post-classi�cation (fun-
damentally di�erent languages) the gain of this method was
relatively mediocre.
Several attempts to improve the �nal ML-classi�cation

by using a neural network classi�er (as introduced in [5])
were undertaken also. Although, with some unique con�-
gurations slightly higher identi�cation rates were measured,
no consistent results could be obtained in our system. The
information contained in the phonotactic scores seems to be
separated su�ciently well by the ML-classi�er.
In this contribution, the described system has been con-

sidered in isolation. Nevertheless, it can be incorporated
in a more general ALI system combining phonotactic and
prosodic approaches in order to further improve the overall
system performance.
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