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ABSTRACT

In this paper a phonotactic language identification system
that employs a multilingual phone-recognizer with multi-
ple language-dependent grammars to tokenize the spoken
signal into several phone-streams is described. For each
stream an independent set of language models is used to
compute the language scores that are subsequently pro-
cessed by two classification stages. Thus, the system ac-
quires information from both the original-label and the de-
coded-phone statistics. A discriminative weighting method
is applied in the second stage for better distinguishing
between similar languages. A modified language-bigram
model, the so-called skip-gram, that allows exploiting of
a wider phonotactic context without increasing the estima-
tion costs of a standard bigram, is introduced. Measured
on the NIST’95 evaluation set, the described system out-
performs the state-of-the-art phonotactic components that
use multiple recognizers, and is, at the same time, less com-
putationally expensive.

1. INTRODUCTION

Automatic language identification (ALI) is a task of recog-
nizing the language from a spoken test sentence.

Besides other solutions to this problem based on prosody
modeling as well as on phonetic acoustic features [1] there
is an efficient way to describe a language in a discrimi-
native way - by means of statistical modeling of phonetic
chains (phonotactics). Several contributions have been pu-
blished dealing with the use of phone n-grams, particularly
bigrams, which were shown to be suitable for distinguishing
between languages [2],[4].

In the phonotactic components of most ALI systems, one
or multiple phonetic recognizers are implemented for toke-
nizing the incoming utterance in terms of a certain phone
repertoire, followed by a set of interpolated bigram langu-
age models. Although Zissman and Singer [2] proved that
the modeling of phonotactic constraints in terms of the
phone set of one language is feasible for identification of se-
veral languages, extended systems with multiple language-
dependent recognizers were designed in order to better re-
present the phone repertoire and to improve the overall per-
formance [5],[7].

A somewhat different strategy for applying phonotactic
features combined with acoustic modeling was presented
in [3] and [7]. Here, multiple language-dependent phone-

recognizers processed the utterance, and the resulting acou-
stic likelihoods were taken for the final classification.

In both cases, the computational costs were considerable
due to the multiple recognition process.

In the following, a system will be presented based
on a single multilingual phone-recognizer with multiple
language-specific bigram models used in the decoding pro-
cess, followed by stream-dependent sets of language models.
This architecture allows a faster phonetic decoding than
with the multiple language-dependent recognizers and ac-
quires information of both the original label statistics and
the decoded-sequence statistics.

2. ALI SYSTEM WITH DOUBLE
BIGRAM-DECODING

The block diagram of the overall identification system is
shown in Fig. 1. In the following subsections a description
of each of the components is given.

2.1. Phonetic Recognizer

An incoming spoken utterance is decoded by an HMM-
based phonetic recognizer with a phone-repertoire broadly
covering six languages (55 phones + 6 non-speech units).
During the Viterbi decoding, M language-specific bigram
(transition) probabilities are applied to constrain the trellis
space, which results in obtaining M different phone sequen-
ces (streams) on the output of the recognizer. The bigram
models that are applied within the recognizer are estimated
using manually labelled transcriptions available for the M
languages, thus carrying the information about the original-
label statistics (later on “inner bigrams”).

2.2. Language Models

With every phone-stream from the phonetic recognizer a set
of N language-bigram models is connected each exploiting
statistical constraints in the corresponding decoded stream
for a given language (later on “outer bigrams”). Unlike the
inner bigrams, the language models exploit the information
of the decoded-phone statistics. Obviously, there are M dif-
ferent language models for each language L; € {L1,..., Ln}.
As the original properties intristic to a language are chan-
ged by the phonetic decoding dependent on the statistical
grammar used, the M language models can be told to de-
scribe phonotactic properties of the language 7; in terms of
the M decoder-inner “languages.”

As the core of the language models, standard interpolated
bigrams were applied [8] to acquire dependences between
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Figure 1. ALI system overview

neighboring phones. Let AW = a(ll), ...,a(jf) be the phone-
tic sequence decoded using the inner bigram [. Then, the
phonotatic language score for AW, given the language L;,
is calculated as:

Spi(AY | L) = (1)

T
1 1 l l
=7 4 log Pr(a" | L;) + Zlog B(a" | al?,, L)

t=2
where B denotes the interpolated bigram model:
Blat | ar—1,Li) = (1 —a)Pr(a; | ag—1, Li) + a Pr(a; | Li)

with « the interpolation constant.

It is a well-known fact that statistical dependences are
present in a wider context than that of phone pairs in spo-
ken utterances. However, a 2nd-order statistical analysis
(trigrams) is faced with the general problem of lacking ro-
bustness due to sparse data. In order to overcome this
difficulty, and to still capture a wider phonetical context,
a sort of modified bigrams were designed as an addition to
the core language models. Here, the modified bigram is de-
fined as the a-posteriori probability of a pair of phones not
neighboring immediately but with a time gap between them
(one phone skipped) as illustrated in Fig. 2.

Later on, such modified bigrams are called skip-grams?'.
Skip-grams can be, similarly to standard bigram, inter-
preted as a marginal distribution of the joint trigram-
probability distribution by summing the time-slot ¢t —1 over

1Tt is obvious that the number of phones skipped can be va-
ried which results in different skip-gram models with an even
wider context. Our experiments, however, did not show further
improvements when using such extended skip-grams.
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Figure 2. 1st-order analysis with one phone skipped

all phones out of the repertoire A:

Pr(a¢ | ar—2)

Pr(a¢ | *,a¢—2)

= Z Pr(a¢—2,at—1,a¢)/ Pr(ai—2)
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(Similarly, summing the time-slot ¢ — 2 would result in ob-
taining the standard bigram).

Skip-gram combined with the standard bigram can par-
tially exploit context information of a phone-triple in a
frame of 1st-order analysis thus not increasing the estima-
tion costs. The interpolated skip-gram score for the test
utterance A" is calculated in a manner similar to (1):

Sskip(A(l) | Li) =

T
1 ! ! i
= 7 log Pr(al | Li) + ) _log B(a) | a2, L)

t=3

and both the standard bigram and the skip-gram scores can
be combined together in an additive way as follows

S(AD | Li) = (1= B)Sui(AY | L) + B Senip(AY | L)

where the influence of the skip-gram can be customized by
varying the parameter f.

2.3. Maximum-Likelihood Classifier

For a test speech signal s(¢) having been decoded to M
streams, M scores for each individual language from the
repertoire are computed and put together. The classifier
makes a maximum decision based on the total language
scores:

M
L*= S(AWY | I 2
arg max. Z (AW | L) (2)
=1
Alternatively, the two best hypotheses are determined for
later processing in a second stage as described in section 2.4.

2.4. Post-Classification

Optionally, a post-classification method is applied to pro-
cess two best hypotheses output by the ML-classifier, as
introduced in [9]. Here the goal is to rise the significance of
individual phone-pairs whose probabilities differ among the
languages in the pair given, while suppressing those having
similar, i.e. less relevant, bigram values. This is achieved
by a discriminative weighting within the scores. As the dis-
similarity measure of two languages m and n in the sense
of phonotactics a delta-matrix was defined as:

mn mn B(ai | a;, Lim) — B(a; | aj, Ln
A = {Ai] i,y = { | ( KE ) ( K5 ) |}
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(With a norm constant D) and used to weight the log-
probabilities in the score for each of the best languages L €
{Lm, Ln}:

T
* 1 mn
ST AV L) = 7y (ARu,)" -log Blar | ar, Li)

t=2

(v is an additional degree of freedom used to control the
impact of A).

Based on the new scores S*, the rank-list of best hypo-
theses may be reordered. Of course, more than two best
hypotheses can be taken into account by the post-classifier
by processing them in pairs. Extensive experiments have
shown, however, that the processing of the two best scores
is sufficient for a nine-language-task.

In the framework of the double bigram-decoding system
the scores S* are re-calculated in each stream in isolation
first and then added together as in (2) again. If the score
sequences computed in the first stage are stored they can
easily be used for computing the new weighted scores. In
this case, the additional computation costs coming along
with the second-stage classification are negligible.

3. DATABASE AND PHONE RECOGNIZER

Up to nine languages from the OGI Multi-Language Tele-
phone Speech Corpus [10] were used for training and system
development, and the NIST? test set from March ’95 invol-
ving nine languages was taken for the system evaluations.

Twelve Mel-warped cepstral coefficients, energy as well
as their first derivatives, were extracted from the signal wa-
veforms and the cepstral-mean substraction was carried out
to suppress channel-dependent feature components.

For the phone-decoder an HMM-based phonetic recogni-
zer was designed by means of the HTK software V2.0. The
usual tri-state left-to-right model architecture for each in-
dividual HMM applied. 55 selected phonetic plus 6 non-
speech HMM’s (context-insensitive) were trained on speech
signals in six languages, for which manually labelled and
segmented transcriptions were available. A total number
of 180 “stories-before-tone” (each 45 secons long) served as
the data to train the HMM parameters.

For the estimation of the inner grammars, 50 original-
label transcriptions in each of the six languages were used.
These probabilities weighted the transitions between indi-
vidual monophone HMM’s during the Viterbi decoding.

Further on, 50+10 utterances (455—st0ries) in each of the
nine languages were decoded by the phonetic recognizer (al-
ternatively with or without applying the inner bigrams) and
the resulting sequences served as data for training the outer
language models as well as for tuning the system parama-
ters (8 and 7). The data did not overlap with the set used
for phonetic training.

The NIST test set (originally recorded in p-law format)
first was converted into linear 16-bit PCM and then pro-
cessed by the feature extractor described above. The test
data in each language consists of 20 45-second phone calls
(spontaneous monologues) and ca. 80 10-second excerpts of
them as specified in the NIST guideline.

?National Institute of Standards and Technology

Error Rate

Configuration 10s [ 45s
Null-Grammar 28.8% | 15.0%
Six Inner Bigrams 18.4% | 5.0%
+ Skip-Grams 16.3% | 5.0%

+ Post-Classifier (2-best) | 15.2% | 4.2%

Table 1. Error rates on 10/45s utterances in the
six-language-task (NIST’95)

Error Rate
Configuration 10s [ 456s

38.7% | 19.4%
27.6% | 13.3%
26.3% | 13.3%
25.8% | 12.2%

Null-Grammar

Six Inner Bigrams
+ Skip-Grams
+ Post-Classifier (2-best)

Table 2. Error rates on 10/45s utterances in the
nine-language-task (NIST’95)

4. EXPERIMENTS

Performance of the proposed system was tested using a clo-
sed set of six and nine languages. In order to assess the
efficiency of the double-bigram-decoding method, the con-
ventional null-grammar decoding combined with a single set
of language models (e.g. discussed in [2]) was examined as
well.

4.1. Six-Language-Task

The following languages were taken for evaluation in the
six-language-task: English, German, Hindi, Japanese, Man-
darin and Spanish?. The same langnages also served as the
six inner bigram languages due to the availability of their
label-transcriptions in the OGI corpus.

Table 1 shows the resulting error rates for the system with
six inner bigrams combined with language models consisting
of 1) standard bigrams or 2) standard- and skip-grams, and
of the second stage post-classifying two competing hypo-
theses computed in the first stage. For comparison, the
performance of a conventional phonotactic component with
null-grammar decoding is given also.

A consistent improvement from 28.8% to 18.4% with the
10s-signals and 15% to 5% error rate for the 45s-signals
could be achieved with the proposed double-bigram-system.
By using the additional skip-grams within the language mo-
dels, the error rate further decreased with the 10-second
utterances. For longer utterances the skip-grams were inef-
fective which can be explained by a high robustness of the
standard bigram scores for such long sequences. Finally, a
certain number of hypotheses misclassified in the first stage
could be corrected by the post-classifier thus reducing the
error rate to 15.2% and 4.2% for 10s- and 45s-long test ut-
terances.

4.2. Nine-Language-Task

Similar performance gains of the individual system configu-
rations can be seen in Table 2 for the the nine-language-task

3 Also chosen in the NIST evaluations in March '94



in which six languages listed above plus three other langua-
ges (French, Tamil and Vietnamese) were involved. In this
case, the inner-bigram decoding, together with skip-grams
and the post-classifier, brought an improvement from 38.7%
to 25.8% and from 19.4% to 12.2% for the 10-second and
the 45-second utterances respectively.

5. DISCUSSION

Results obtained in the experiments clearly prove the ef-
ficiency of the double-bigram architecture. Measured on
the same NIST’95 test set data, the system outperforms
the state-of-the-art phonotactic system with six language-
dependent recognizers described in [6], and, at the same
time, allows a faster, synchronous Viterbi decoding due to
the common phone-set. As the phonetic decoding repre-
sents the vast part of the overall computation costs this
saving is viewed as a considerable advantage. Also, less
speech data are necessary for training the single HMM set,
as opposed to the full training of six separate recognizers.

As expected, aquiring a wider phonetical context, even
though by means of lIst-order statistics only, contributes
to a better performance of standard bigrams. Although,
for long test sequences the effect of the skip-grams seems
to be rather inferior. Moreover, an increased sensitivity to
phone-errors could have negatively influenced the modeling
potential of skip-grams as the probability of an erroneous
deletion or insertion within a triple is higher than that of a
phone-pair. Without regard to storage, the skip-grams do
not require any additional data for being estimated.

Previously introduced in [9], in connection with a null-
grammar decoder, the post-classifier proved to be feasible
for the double-bigram system as well, whereby not increa-
sing the computation costs considerably. Because not all
language pairs are suitable for the post-classification (fun-
damentally different languages) the gain of this method was
relatively mediocre.

Several attempts to improve the final ML-classification
by using a neural network classifier (as introduced in [5])
were undertaken also. Although, with some unique confi-
gurations slightly higher identification rates were measured,
no consistent results could be obtained in our system. The
information contained in the phonotactic scores seems to be
separated sufficiently well by the ML-classifier.

In this contribution, the described system has been con-
sidered in isolation. Nevertheless, it can be incorporated
in a more general ALI system combining phonotactic and
prosodic approaches in order to further improve the overall
system performance.
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