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1. ABSTRACT

We are interested in the problem of understanding u-
ently spoken language. In particular, we consider people's
responses to the open-ended prompt of 'How May I help

you?'. We then further restrict the problem to classifying
and automatically routing such a call, based on the mean-
ing of the user's response. Thus, we aim at extracting a
relatively small number of semantic actions from the utter-
ances of a very large set of users who are not trained to
the system's capabilities and limitations. In this paper, we
describe the main components of our speech understanding
system: the large vocabulary recognizer and the language
understanding module performing the call-type classi�ca-
tion. In particular, we propose automatic algorithms for
selecting phrases from a training corpus in order to en-
hance the prediction power of the standard word n-gram
The phrase language models are integrated into stochas-
tic �nite state machines which outperform standard word
n-gram language models. From the speech recognizer out-
put we recognize and exploit automatically-acquired salient
phrase fragments to make a call-type classi�cation. This
system is evaluated on a database of 10K uently spoken
utterances collected from interactions between users and
human agents.

2. INTRODUCTION

The typical approaches to the problem of topic classi-
�cation are word and concept spotting. Although these
techniques work quite well for small applications, they do
not scale up to large tasks and are limited in scope. On the

other hand, we view this problem as understanding speech
by taking into account the information conveyed by the
whole utterance, with the ultimate goal of building auto-
matically trained language models integrating both recog-
nition and understanding. For this reason, we use a large
vocabulary speech recognition front-end followed by an un-
derstanding module which performs a stochastic mapping
between salient fragments and call-types.

The problem of automated call routing has been ad-

dressed in [2] and the issues concerning the understand-
ing and dialog mechanisms are part of ongoing research
([1], [10]). We have created a database of 10K spoken trans-
actions of people responding to a human agent's greeting
of 'How May I help you?' [2]. The �rst utterance of each
transaction has been transcribed and marked with a call-
type by labelers. There are 14 call-types plus an other class
as a complement. In particular, we focused our study on
the classi�cation of the user's �rst utterance in these di-
alogs. The spoken sentences vary widely in duration, with
a distribution distinctively skewed around a mean value of
5.3 seconds corresponding to 19 words per utterance. Some
examples of these utterances are given below:

� Yes ma'am where is area code two zero one?

� I'm tryn'a call and I can't get it to go

through I wondered if you could try it

for me please?

� Hello

The whole set of utterances has been split into three sub-
sets for training (8K), developing (1K) and testing (1K)
the acoustic and language models for recognition and un-
derstanding. In the the training set there are 3:6K words
which de�ne the lexicon. The out-of-vocabulary (OOV)
rate at the token level is 1:6%, yielding a sentence-level
OOV rate of 30%. Signi�cantly, only 50 out of the 100 low-

est rank singletons were cities and names while the other
were regular words like authorized, realized, etc.

3. LANGUAGE MODELING

For language modeling, to constrain the recognizer,
we automatically trained stochastic grammars repre-
sented with the Variable Ngram Stochastic Automaton
(VNSA) [5]. The VNSA is a non-deterministic automa-
ton that allows for parsing any possible sequence of words
drawn from a given vocabulary V . Moreover, it imple-
ments a backo� mechanism to compute the probability of
unseen word-tuples. The stochastic automaton is automat-
ically generated from the training corpus according to the



algorithm presented in [5]. The order of the VNSA net-
work is the maximum number of words that can be used
as left context in the computation of the conditional prob-
ability P (wijwi�n+1; : : : ; wi�1). VNSAs have been used to
approximate standard n-gram language models and their
performance is similar to the standard bigram and trigram
models [5]. The bene�t from the use of the VNSAs is
threefold. First, the incorporation into a one-pass Viterbi
speech decoder is straightforward and e�cient. Second,
VNSAs can be exploited in a cascade of transducer composi-
tions for speech processing (e.g., to include intra and inter-
word phonotactic constraints) [8]. Thirdly, the VNSA is
an e�ective method for training and implementing stochas-
tic class-based language models that outperform the stan-
dard n-gram models in terms of perplexity and word accu-
racy [4], [5].

4. LANGUAGE MODELING WITH

AUTOMATICALLY ACQUIRED

PHRASES

Traditionally, standard n-gram language models for
speech recognition implicitly assume words as the basic lex-
ical unit. However, the motivation for choosing optimal
longer units for language modeling is threefold. First, not
all languages have a prede�ned unity, such as the word (e.g.
the chinese language). Second, many word tuples (phrases)
are recurrent in the language and can be thought as a single
lexical entry (e.g. by and large, I would like to, United
States of America, etc..). Third, the conditional proba-
bility P (wijwi�n+1; : : : ; wi�1) can bene�t greatly by using
variable length units to capture long spanning dependen-
cies, for any given order n of the model. In a previous
work, we have shown the e�ectiveness of incorporating man-
ually selected phrases, into the VNSAs for reducing the test
set perplexity and the word error rate of a large vocabu-
lary recognizer( [4], [5]). However, a critical issue for the
design of a language model based on phrases is the algo-
rithm the automatically chooses the units by optimizing
a suitable cost function. For improving the prediction of

word probabilities, the criterion we used is the minimiza-
tion of the language perplexity PP (T ) on a training corpus
T . This algorithm for extracting phrases from a training

corpus is similar in spirit to [6], but di�ers in the language
model components and optimization parameters. In addi-

tion, we extensively evaluate the e�ectiveness of phrase n-
gram (n � 2) language models by means of an end-to-end
evaluation of a spoken language system. The phrase ac-

quisition method is a greedy algorithm that performs local
optimization based on an iterative process which converges
to a local minimum of PP (T ). As depicted in �g. 1, the
algorithm consists of three main parts:

� Generation and ranking of a set of candidate phrases.

This step is repeated at each iteration of algorithm to
constrain the search for all possible symbol sequences
observed in the training corpus.

� Each candidate phrase is evaluated in terms of the
training set perplexity.

� At the end of the iteration, the set of selected phrases
is used to �lter the training corpus and replace each
occurrence of the phrase with a new lexical unit. The
�ltered training corpus will be referenced as Tf .

In the �rst step of the procedure, a set of candidate phrases
(unit pairs) 1 is drawn out of a training corpus T and ranked
according to a correlation coe�cient. The most used mea-
sure for the interdependence of two events is the mutual
information MI(x;y) = log

P (x;y)

P (x)P (y)
. However, in this ex-

periment, we use a correlation coe�cient that has provided
the best convergence speed for the optimization procedure:

�x;y =
P (x; y)

P (x) + P (y)
(1)

where P (x) is the probability of symbol x . The coe�cient
�x;y (0 � �x;y � 0:5) is easily extended to de�ne �x1;x2 ;:::;xn
for the n-tuple (x1; x2; : : : ; xn) (0 � �x1 ;x2 ;:::xn � 1=n).
Phrases (x; y) with high �x;y or MI(x; y) are such that
P (x; y) ' P (x) ' P (y). In the case of P (x; y) = P (x) =
P (y), �x;y = 0:5 while MI = �logP (x). Namely, the rank-
ing by MI is biased towards events with low probability
events which are not likely to be selected by our Maximum
Likelihood algorithm. In fact, the phrase (x; y) will be se-
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Figure 1: Algorithm for phrase selection

lected only if P (x;y) ' P (x) ' P (y) and the training set
perplexity is decreased when (x; y) is treated as a single

unit. In �g. 2 we show the behavior of the training set per-
plexity by incorporating an increasing number of selected
phrases using �x;y and MI(x; y) as ranking coe�cient. In
particular, after evaluating 1000 phrases and selecting 300
of those, the perplexity decrease is 20% and 4% using �x;y
and MI(x;y) respectively.

1We ranked symbol pairs and increased the phrase length by suc-
cessive iteration. An additional speed up to the algorithm could be
gained by ranking symbol k-tuples (k � 2) at each iteration.
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Figure 2: Training set perplexity vs number of selected phrases
using � (solid line) and MI (dashed line).

Each of the candidate phrases (x; y) is treated as a sin-
gle unit in order to build a VNSA model � of k� th (k � 2)
order based on the �ltered training corpus, Tf

2. Then,
(x; y) is selected by the algorithm if PP (T ) > PP�(T ).
The stochastic �nite state machine automaton has now the
phrase x y in the set of recognizable symbols. However,
the perplexity PP�(T ) is computed at the word level. At
the end of each iteration the set f(�x; �y)g is selected and
employed to �lter the training corpus. The algorithm it-
erates until the perplexity decrease saturates or a speci�ed
number of phrases have been selected. The second issue in
building a language model with phrase is the training of
the VNSAs with the newly selected lexical units. The algo-
rithm just described provides a segmentation of the training
corpus sentences into variable length lexical units. In gen-
eral, the replacement of the symbol sequence (x; y) with
a phrase unit x y may disable the parsing of symbol se-
quence of the type : : : ; z; y; : : : or : : : ; x; z; : : :. Thus, in
order to take advantage of the prediction power of the se-
lected phrases without losing the granularity of the basic

unit lexicon we have considered a multiple parsing strat-
egy. The �nite state machine learning algorithm in [4] is
provided with all available segmentation of each sentence
of T including that one using only basic lexical units. As
a result, the VNSA is designed in such a way that it can

parse any possible sequence of basic unit while computing
state transition probabilities based on the selected phrases
( [5]). In addition, the VNSAs' states are pruned in order
to minimize the number of states with a negligible increase
of the test set perplexity [5].

In �gure 3 the test set perplexity is measured versus the
VNSA orders for word and phrase language models. It
is worth noticing that the highest perplexity payo� comes
from using phrase bigram with respect to word bigram. Fur-

thermore, the perplexity of the phrase models is alway lower
than the word models, as a result of the multiple segmen-

2At the �rst iteration T �Tf .

tation in the training procedure.
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Figure 3: Test set perplexity vs VNSA Language Model Order

5. SPEECH RECOGNITION

EXPERIMENTS

In these experiments, we used o�-the-shelf acoustic mod-
els trained on a separate database of telephone-quality read-
speech utterances. The lexicon contains a single pronuncia-
tion per word which is then composed with the VNSA's
stochastic network into a weighted rational transducer.
This result is then composed on-the-y with yet another
transducer to apply full-context acoustic phone models [9].
The engine used for speech decoding is a research version
of the AT&T Watson recognizer [7]. In table 1 we report
the results for word accuracy versus variable VNSA model-
order. From these preliminary experiments, we observe a
signi�cant advantage only using phrase bigram over word
bigram and no payo� from high order VNSAs.

unit type VNSA order

2 3

word 49.5 52.7

phrase 50.5 52.7

Table 1: Word accuracy versus variable VNSA order using
words and phrases.

6. CALL-TYPE CLASSIFICATION

For call type classi�cation, we automatically acquired

salient phrase fragments from the training set of sentence-
action pairs [1]. The salient phrases have the important
property of modeling local constraints of the language while
carrying most of the semantic interpretation of the whole
utterance. We performed a transduction from observed

phrase fragments in an utterance to associated call-types.
Then, we used a peak-of-fragments classi�er to determine



the 1st and 2nd most likely call-types of the whole utter-
ance. In an automated call router there are two impor-
tant performance measures. The �rst is the probability of
false rejection, where a call is falsely rejected or classi�ed
as other. Since such calls would be transferred to a human
agent, this corresponds to a missed opportunity for automa-
tion. The second measure is the probability of correct classi-
�cation. Errors in this dimension lead to misinterpretations
that must be resolved by a dialog manager [10]. In �g. 4,
we plot the probability of correct classi�cation versus the
probability of false rejection, for word and phrase language
models of increasing order. The curves are generated by
varying a salience threshold [3], [1]. Phrase bigrams out-
perform both word bigrams and trigrams with memory and
speed similar to word bigrams. In particular, if we pick the
operating point where the false rejection rate is 40%, phrase
bigrams ouperform word trigram and we gain 6% accuracy
in call-type classi�cation over a word bigrams. We thus con-
clude that building stochastic local grammars for language
modeling and interpretation is a critical research issue for
this type of task. In a dialog system, it would be useful
even if the correct call-type was one of the top 2 choices
of the decision rule [10]. Thus, in �g. 5 the classi�cation
scores are shown for the �rst and second ranked call-types
identi�ed by the understanding algorithm.
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Figure 4: Rank 1 classi�cation rate from text and speech with
word n-grams and phrase bigrams

7. CONCLUSION

In conclusion, we have described our preliminary research

results on the task of automated call routing for a database
of 10K utterances. We have described the database and
the system we used for large vocabulary speech recogni-
tion. Then we proposed methods for automaticallly select-
ing phrases from a training corpus for both recognition and

understanding. Phrase bigrams achieve performances in be-
tween word bigram and trigram, in terms of perplexity and
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Figure 5: Rank 1 and 2 classi�cation rate plot from text and
speech with phrase bigrams

word accuracy. In terms of call-type classi�cation, phrase
bigrams outperform word trigrams with memory and speed
similar to word bigrams. Finally, we have reported on the
understanding module and the related call-type classi�ca-
tion scores.
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