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ABSTRACT

A 
exible speech understanding framework combining

key-phrase detection and veri�cation is presented. Detec-

tion of semantically-tagged key-phrases directly leads to ro-

bust understanding. In order to select reliable detection

and eliminate false alarms, utterance veri�cation technique

is incorporated. A phrase veri�er combines subword-based

likelihood ratios of correct models and anti-subword al-

ternate models. A con�dence measure that focuses on

mis-matched subwords is proposed and demonstrated as the

most e�ective. The combined strategy drastically improves

the semantic accuracy for out-of-grammar utterances, while

maintaining the performance for in-grammar samples. We

also found that utterance veri�cation applied after gram-

mar-based decoding is not so e�ective as the proposed de-

tection and veri�cation strategy.

1. INTRODUCTION

In the past years, several spoken dialogue systems have been

evaluated in real-world applications. Mostly, these systems

use �nite state grammars to accept typical user utterances,

because there are no data available to train statistical lan-

guage models for speci�c tasks. However, it is observed

that even after tuning the grammars by system developers,

about 20�30% of user utterances are still out of the gram-

mar speci�cations and they result in improper recognition.

Most of these utterances contain meaningful key-phrases

which could be detected and thus lead to understanding.

Others are not relevant to the task and should be rejected.

When we review most of the spoken dialogue systems,

their task speci�cations are highly well-de�ned, so that nec-

essary information for the system is described with a de�-

nite set of task-related slots. Their examples include form

�lling or information retrieval by voice. Therefore, speech

understanding problem can be formulated as extracting or

detecting the task-related slots from unconstrained utter-

ances. These slots are usually de�ned with keywords or

key-phrases such as time and place. Thus, we have stud-

ied detection-based strategy[1] that focuses on and iden-

ti�es the semantically signi�cant portions and reject the

out-of-grammar and out-of-task portions of the input utter-

ance. Utterance veri�cation technique enhances this prop-

erty by giving con�dence measures to recognition results.
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Combined with a 
exible dialogue manager, the detection

and veri�cation framework will realize partial understand-

ing and disambiguation of unclear portions through the sub-

sequent dialogue session. In this paper, we mainly address

how to combine veri�cation process into detection-based

recognition and evaluate our strategy by comparing with

several conventional approaches.

2. COMBINED DETECTION AND

VERIFICATION STRATEGY

We adopt concept-based key-phrases as the detection

unit[2]. They are de�ned so as to correspond to seman-

tic slots such as time and place. Unlike bottom-up phrases

de�ned by the n-gram scheme, our top-down phrases are

directly mapped into semantic representations. Thus, de-

tection of them directly leads to robust understanding. A

key-phrase consists of one or a few keywords and functional

words. For example, `in the morning' for a time period,

and `in downtown Chicago' for a local area. In most situa-

tions, they are uttered without a break even in spontaneous

speech. Thus, this longer speech unit realizes more stable

matching than simple word spotting. A recurrent automata

of phrase sub-grammars (phrase network) is used for detec-

tion.

The other main feature of the strategy is to incorpo-

rate utterance veri�cation technique to realize ideal detec-

tion mechanism that does not match irrelevant portions of

speech without using large-vocabulary non-keyword knowl-

edge. The veri�cation technique is used to select reliable

detection and eliminate improper matching or false alarms.

Based on the con�dence measures, the system can reject

portions that contain super
uous events such as out-of-

vocabulary words and any form of dis
uency.

The keyword or key-phrase veri�cation is di�erent from

the conventional utterance veri�cation, because it is not the

�nal decision. False rejection of correct hypotheses is criti-

cal, while accepted false alarms can still be eliminated in the

subsequent sentence parsing and veri�cation process. Fur-

thermore, since veri�cation of phrases is done with partial

input of fewer subword segments than the whole utterance

veri�cation, it demands more reliable con�dence measures.

Finally in order to understand the whole utterance, we

perform sentence-level processing that combines detected

key-phrases and veri�es the end result.

Thus, our overall strategy consists of the following steps,

as depicted in Figure 1.



speech

sentence
verification

sentence
parsing

key-phrase
verification

key-phrase
detection

semantic
constraints

phrase
sub-grammars

anti-subword
models

subword
models

tagged
phrases

semantic
frame

sentence

Figure 1. Outline of the strategy

1. key-phrase detection

A set of key-phrases are detected using a set of phrase

sub-grammars speci�c to the system prompt in the dia-

logue. The key-phrases are labeled with semantic tags,

which are useful in sentence-level parsing. The detec-

tion algorithm is a modi�cation of forward-backward

search with hypothesis merging to generate a phrase

lattice e�ciently[1].

2. key-phrase veri�cation

The detected key-phrases are veri�ed and assigned con-

�dence measures. The process attempts to eliminate

false alarms. It is a combination of subword-level veri-

�cations that use anti-subword models to test the indi-

vidual subwords of the recognized results.

3. sentence parsing

The veri�ed key-phrase candidates are connected

into sentence hypotheses using task-speci�c seman-

tic knowledge. A stack decoder is used to search

for the optimal hypotheses that satisfy the semantic

constraints[2].

4. sentence veri�cation

The best sentence hypotheses are veri�ed both acous-

tically and semantically for the �nal output.

The framework will realize not only 
exible understand-

ing but also portable and general one. For vocabulary inde-

pendent recognition, universal context dependent subword

units are selected and trained without in
uence of a speci�c

vocabulary set[3]. The veri�cation is also formulated in a

subword-based manner. Both phrase veri�cation and sen-

tence veri�cation are carried out by combining likelihood

ratio scores of constituting subwords[4]. Moreover, specify-

ing phrase sub-grammars from semantic slots is much easier

than writing a whole sentence grammar.

3. SUBWORD-LEVEL VERIFICATION

For every subword n in a phrase sequence, a veri�cation

score is computed based on its corresponding likelihood ratio

(LR) statistic, de�ned as,

LRn =
P (OjH0)

P (OjH1)
=
P (Oj�c

n
)

P (Oj�an)
(1)

where O is the observed speech segment, H0 is the null hy-

pothesis that subword unit n is present in the segmentO,H1

is the alternative hypothesis that subword n is not in the seg-

ment O, and �
c

n
and �

a

n
are the corresponding subword and

anti-subword models for subword n, respectively[5]. The

observation sequence O is aligned for subword n with the

Viterbi algorithm as the result of recognition.

The anti-subword model characterizes the alternative hy-

pothesis H1. For every subword model, a corresponding

anti-subword model is trained speci�cally for the veri�ca-

tion task by clustering the highly confusing subword classes

[4]. The use of an anti-subword model as a reference is

more discriminative than unconstrained decoding of sub-

word models[4], because the anti-subword model is more

sensitive to the similarity of subwords and free from the per-

formance of subword-level recognition. The anti-subword

model has the same structure, i.e. number of states and

mixtures, as the correct subword HMM, except that we use

a context-independent model for veri�cation.

By taking the logarithm of Eq. 1 and normalizing it by

the duration ln of the speech segment O, we de�ne LLRn.

LLRn = flogP (Oj�c
n
)� logP (Oj�a

n
)g=ln (2)

Since the �rst term of the equation is exactly the recognition

score, we just o�set the score by that computed with the

anti-subword model.

4. CONFIDENCE MEASURES OF

KEY-PHRASE

A con�dence measure for phrase veri�cation combines the

subword-level veri�cation scores. It is a joint statistic and

a function of likelihood ratios of all constituting subwords.

We have investigated several functional forms of the con�-

dence measure. The �rst con�dence measure CM1 is based

on frame duration normalization. It is exactly the di�er-

ence of the two Viterbi scores of the subword models and

the corresponding anti-subword models de�ned as,

CM1 =
1

L

X
n

(ln � LLRn) (3)

where ln is duration of subword n and L is total duration

of the phrase, i.e. L =
P
ln.

The second one CM2 is based on subword segment-based

normalization. It is a simple average of log likelihood ratios

of all the subwords de�ned as,

CM2 =
1

N

X
n

LLRn (4)

where N is the total number of subwords in the phrase.

The third one CM3 focuses on less con�dent subwords

rather than averaging all the subwords. This is because

some subwords of an incorrect phrase may exactly match

the input. In order to �nd less con�dent subwords, we nor-

malize the log likelihood ratio assuming a Gaussian distri-

bution for every subword. The means and variances are

estimated with the samples used for training subword and

anti-subword models. We denote this normalized log like-

lihood as LLR�

n
. Then, we pick up those subwords whose

likelihood ratios are less than their means. Thus, CM3 is

de�ned as,

CM3 =
1

N

X
n

�
LLR

�

n
if LLR�

n
< 0

0 otherwise
(5)



For every con�dence measure, a speci�c threshold is set up.

If its value is below the threshold, the candidate is discarded

from the phrase lattice.

5. SENTENCE VERIFICATION

The sentence veri�cation module makes the �nal decision

on the recognition output. It uses the global acoustic and

semantic information on the entire input utterance. While

the key-phrase veri�cation makes only local decisions, the

sentence veri�cation process combines its results and real-

izes similar e�ect as the conventional utterance veri�cation

algorithm, although it attempts to accept the input even if

it contains unexpected extraneous words.

The semantic veri�cation process judges if the seman-

tic representation in the output is completed. In dialogue

applications, we often observe incomplete utterances; for

example, saying a month \August" without specifying any

days of the month. Ideally, they should be accepted with

the assumption that remaining semantic slots will be com-

pleted in the subsequent dialogue exchanges. However, un-

conditional approval of partial sentences invalidates the ef-

fect of utterance veri�cation and accepts false alarms as

well. Therefore, we reject a sentence hypothesis only if its

semantic representation is not completed and most of the

input segments are rejected by the likelihood ratio tests.

6. EXPERIMENTAL EVALUATION

We have evaluated our strategy in two spoken dialogue ap-

plications; Car Reservation task and Movie Locator task.

The �rst one involves several interactions of simple utter-

ances, while the latter task is generally completed with a

single query of a rather complex sentence. Trials were per-

formed on dialogue systems of the tasks using a speech rec-

ognizer. All the data were collected via telephone lines and

uttered by general public users.

For evaluation, we de�ne the semantic accuracy in much

the same way as the word accuracy. In particular, the se-

mantic error is de�ned based on the sum of substitution,

insertion and deletion errors by matching the content of

the semantic slots instead of the recognized words.

The sample utterances are classi�ed into three cate-

gories. In-grammar sentences consist of valid phrases and

are covered by the conventional sentence grammars. Out-

of-grammar sentences have out-of-vocabulary or fragmental

words, or segments with more than one assignment to a se-

mantic slot. Out-of-task sentences contain no key-phrases

and should be rejected. For a uni�ed de�nition of the se-

mantic accuracy, we prepare a null slot as an answer for

them. Thus, the semantic accuracy for out-of-task samples

means the correct rejection rate.

6.1. Car Reservation Task

In the Car Reservation task, a user is prompted to provide

speci�c information to �ll the reservation form such as date

and location[6]. We refer to each pair of the prompt and

the answer specifying such information as a sub-task. Here,

we choose the DATE sub-task for the primary evaluation,

because it contains the largest number of samples and typ-

ical dialogue phenomena. The phrase sub-grammar allows

iterations of days of the week, months, days of the month

and years with some constraints. The vocabulary size is 99.
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Figure 2. E�ect of phrase veri�cation (DATE sub-

task)

0

10

20

30

40

50

60

70

80

90

100

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

S
em

an
tic

 A
cc

ur
ac

y 
(%

)

Threshold for CM3

"In-Grammar"
"Out-of-Grammar"

"Out-of-Task"

Figure 3. Accuracy vs. threshold (DATE sub-task)

Phrase veri�cation was performed with several con�dence

measures de�ned in the previous section. Figure 2 shows

comparison of the con�dence measures with the acceptance

rate of incorrect phrases (false alarms) versus the false rejec-

tion rate of correct phrases. The frame duration-based con-

�dence measure (CM1) is inferior to the subword segment-

based ones. The con�dence measure CM3 proposed in this

work achieves the best performance. This measure reduces

the false alarms to a half with 2.5% rejection of correct

hypotheses.

This reduction improves the semantic accuracy of out-

of-grammar and out-of-task samples as a result of the sen-

tence parsing. Figure 3 shows the semantic accuracy for

each category of samples depending on the threshold values

for CM3. The left-most of the graph corresponds to the

baseline detection method without any veri�cation. While

the curves for in-grammar and out-of-task utterances are

monotonous, there is a performance peak on the out-of-

grammar samples that a�ects choice of the threshold value.

Then, several approaches for speech understanding were

investigated. Here, sentence veri�cation was incorporated.

For comparison, a rigid grammar was also applied. It is

fundmentally the same as the one used for the �eld trial, and

uses the constraint of typical sequences of phrases, which

detection does not assume. We also compared with the

decoding followed by the veri�cation procedure as in [7].



Table 1. Semantic accuracy with several approaches (DATE sub-task)

in-grammar out-of-grammar out-of-task total
samples samples samples

number of samples 1123 154 91 1368

decoding (with rigid grammar) 92.7% 29.4% 18.7% 83.4%

+ phrase veri�cation (CM3) 92.8% 42.3% 39.6% 85.6%

+ sentence veri�cation 92.8% 41.3% 48.4% 85.7%

detection (with phrase network) 92.2% 58.1% 19.8% 86.2%

+ phrase veri�cation (CM3) 92.3% 71.6% 41.8% 88.5%

+ sentence veri�cation 92.2% 71.6% 51.6% 88.7%

For phrase veri�cation, CM3 was adopted. The same beam

width was used for all methods.

The results are listed in Table 1. It is clear that our

detection strategy outperforms the conventional decoding

scheme. It achieves much higher accuracy for out-of-

grammar samples while keeping comparable performance

for in-grammar ones. Detection with the phrase network

almost doubles the accuracy for out-of-grammar samples,

and the use of phrase veri�cation improves it further. The

veri�cation applied after decoding improves the rejection

performance for out-of-task utterances, but it is not so ef-

fective in recognizing out-of-grammar samples. This is be-

cause key-phrases cannot be recovered from the result of

the initial decoding processing with the rigid grammar. The

sentence-level veri�cation has little e�ect, but it improves

rejection of out-of-task utterances.

We have done experiments on other sub-tasks in the Car

Reservation task and con�rmed much the same tendency.

6.2. Movie Locator Task

The Movie Locator task allows a user to make an inquiry

on movies being played at theaters. Concretely, a user can

ask about movie titles, theaters or the time, by specify-

ing a movie title, a category, a theater or a location area.

The utterances are complex and involve multiple phrases as

well as extraneous words. We observed a variety of out-of-

grammar samples, which constitute more than 25% of the

collected samples. The number of samples used for evalua-

tion is 2303, and the vocabulary size is 474.

The phrase network was derived by connecting parallel

phrase sub-grammars, while a rigid grammar to cover whole

sentences was also used for comparison.

The sentence understanding results are listed in Table 2.

Because there were only a few (40) out-of-task utterances

in the test database, sentence veri�cation was not tested

and results for out-of-task samples are not listed, although

the total accuracy counts such samples. Much the same

tendency as in the Car Reservation task is con�rmed. The

detection strategy achieves higher accuracy than the decod-

ing one, and the veri�cation process improves it further.

Among the con�dence measures, CM3 is the best.

7. CONCLUSION

We have proposed a key-phrase detection and veri�cation

approach oriented for 
exible spoken language systems.

The experimental results on several tasks demonstrate that

the proposed approach is more e�ective than the conven-

tional decoding with rigid grammars. It drastically im-

Table 2. Semantic accuracy (MOVIE-2 task)

in- out-of- total
grammar grammar
samples samples

number of samples 1662 601 2303

decoding 78.1% 33.5% 65.6%

+ veri�cation (CM3) 76.8% 42.4% 67.3%

detection 79.2% 44.8% 69.5%

+ veri�cation (CM1) 78.9% 45.4% 69.4%

+ veri�cation (CM2) 79.5% 47.4% 70.4%

+ veri�cation (CM3) 78.0% 51.3% 70.5%

proves the accuracy for out-of-grammar utterances while

keeping comparable performance for in-grammar ones. The

veri�cation applied after decoding is e�ective only for re-

jecting out-of-task utterances but does not realize 
exible

understanding of out-of-grammar ones.

The key property of our framework is portability and gen-

erality. Both the detection and veri�cation are vocabulary

independent subword-based, thus applicable to a variety of

new tasks. Moreover, the language model of the key-phrase

network is easily derived from task speci�cations.
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