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ABSTRACT

The paper describes a speech understanding system, which
allows the online control of arbitrary running applications
owning a well-defined command interface. A sequential
combination of a signal preprocessor, a stochastic-driven
one-stage semantic decoder and a rule-based intention de-
coder is proposed. Following this principle and using the
respective algorithms, speech understanding front-ends for
the domains ’graphic editor’ and ’service robot’ could be
successfully realized.

Keywords: speech understanding, stochastic knowledge
bases, semantic decoding, intention decoding.

1. INTRODUCTION AND SYSTEM OVERVIEW

For expressing a particular intention, a speaker encodes
this intention in form of speech. The task of the speech un-
derstanding front-end is to record and analyze the acoustic
signal and to infer the user’s intention.

For the whole speech understanding process, we propose a
sequence of a signal preprocessor (generating the observa-
tion sequenceO), a semantic decoder (generating the se-
mantic structureS) and an intention decoder (generating
the user’s intentionI), as shown in figure 1.

We treat the intentionI as equivalent with a certain pro-
gram in an application-specific language (e.g. database
query language, application command language), for exe-
cuting the respective user’s intention.

To demonstrate our speech understanding approach, we
first implemented NASGRA (NAtural Speech understand-

Fig. 1: The speech understanding front-end
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ing GRAphic editor), which allows the user to create, mod-
ify or delete three-dimensional objects such as cones, cubo-
ids, cylinders or spheres exclusively by spoken commands.
Another working system is the speech understanding ser-
vice robot ROMAN [3], which is able to carry out every-
day jobs like fetching and bringing things:

2. SIGNAL PREPROCESSING
The signal preprocessing module creates 64-dimensional
feature vectors in intervals of 10 ms, each of them describ-
ing the spectral characteristics of the speech signal con-
tained in a 25 ms-wide window [1]. The time alignment of
these feature vectors is called ’observation sequence’O.
Similar to the task of stochastic word chain decoding
(speech recognition), our semantic decoder uses this obser-
vation sequence as input for stochastic pattern matching.

3. SEMANTIC DECODING
Unlike other approaches, we use a purely stochastic one-
stage decoding algorithm. Since the knowledge for seman-
tic decoding is automatically trained, the algorithm is inde-
pendent of the domain, the application, and the language.

3.1  Maximum-a-Posteriori Top-Down Decoding
Stochastic methods have proved to be a powerful approach
for speechrecognition, so it is obvious to solve the task of
speechunderstanding in a similar way, too. Thus, the prob-

Fig. 2: Typical scenario from
the NASGRA-Domain

Fig. 3: The speech-understand-
ing service robot ROMAN



lem of mapping a sequence of observation vectorsO to its
corresponding semantic structureS can be expressed by
maximizing the maximum-a-posteriori (MAP) probability

:
. (1)

Applying Bayes’ inversion formula and taking into account
just the most likely word chainW, we obtain the following
classification rule [7][9]:

(2)

The probabilities  and  in eq. (2) have to be
delivered by the grammar, i.e. the semantic and the syntac-
tic model. The emission probability  is calculated
by phoneme-based, continuous, speaker independently
trained Hidden-Markov-Models (HMMs), which could be
adopted from an existing speech recognition system [11].

In contrast to the bottom-up strategy, which is applied for
the speech understanding systems of many research
groups, we follow a top-down strategy of the decoding
process satisfying eq. (2). As shown in chap. 3.3, we devel-
oped a very efficient chart-parsing algorithm, which solves
semantic decoding in an incremental way.

3.2  The Semantic Structure
The definition of the semantic representation is essential
for the architecture of the semantic decoder, and strictly
speaking, for the prospect of realizing it at all. Unlike con-
ventional multi-stage approaches for semantic decoding,
we do not use a very precise representation in the linguistic
sense. Similar to that description used in [7], our semantic
structure [9] is a conceptual representation of the utterance
with each word of the word chain assigned to one certain
concept. However, the semantic structure isnot a linear se-
quence of concepts, but it ishierarchic like a tree, with the
power to express complex nested semantic dependencies in
the utterance.

A semantic structureS is a set of a finite numberN of con-
cepts, called semantic units or shortlysemuns sn:

. Each semunsn has a typet[sn],
a value v[sn] and refers to a certain number
(depending on its typet[sn]) of successor semuns

. The blank se-
mun ’blnk’ forms an exception. It represents a leaf of the
tree and has the type , no value and no suc-
cessor. The number of non-blank semuns along the longest
branch ofS is called ’nesting depth’D. Fig. 4 shows an ex-
ample of the semantic structure for the user‘s utterance
"please move the sphere two centimetres downwards" with

 and  within the NASGRA-domain.

To calculate the probabilityP(S) and the conditional proba-
bility P(W|S), the grammar occupies stochastic rules de-
scribing only dependencieslocal to one certain semun

. Hence, the semantic model contributes rules for
fixing the type, value and the types of the successors of
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each semun, and the syntactic model determines the words,
which have to be produced for each semun and their align-
ment in the word chain. Since the grammar can be seen
context-free with some additional extensions taken from
HPSG-grammars [8], augmented transition networks [12],
and ID/LP-grammars [4], an active chart-parsing algorithm
could be applied for realizing the decoder.

3.3  Realization of the Semantic Decoder
The parsing algorithm (see [10]) consists of two layers:

• The grammar layer is an active chart-parser which was
augmented by a probabilistic dynamic programming
mechanism to satisfy the MAP-decoding in eq. (2). The
parser is consequently realized in a top-down strategy and
incrementally processes the input left to right.

• Thepronunciation layer contains word hypotheses, each
represented by one HMM-trellis, which is processed by
Viterbi beam-search.

The grammar layer is tightly coupled to the pronunciation
layer, the edges in the chart predict potential word hypothe-
ses bypush-word operations. After having consumed a
certain part of the observation sequence, each word hy-
pothesis acquires a score for matching the respective
number of feature vectors. Every time the end state of the
respective word HMM is reached, apop-word operation is
invoked to extend those edges, which formerly triggered
the affiliatedpush-word operation.

As shown in [10], the integration of probabilistic active
chart-parsing and Viterbi beam-search is possible in a
seamless, consistent way. High efficiency is gained through
structure sharing both in the active chart and inside the

Fig. 4: Graphic depiction of a semantic structureS

Fig. 5: Integration of word HMMs in an active chart
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HMMs, by preserving as many occasions for recombina-
tion of hypotheses as possible. Apart from beam-search,
further techniques are applied to reduce memory and com-
putation effort, such as histogram pruning and discontinued
grammar activity.

4. INTENTION DECODING
Generally, it is not possible to directly use the semantic
structure as application input. Hence, it is necessary to
transform the semantic structure into an application-spe-
cific code, denoted as user’s intentionI. For that purpose,
we suggest an application-specific combination of a pre-
processor and a compiler:

Thepreprocessor is necessary to correct inconsistencies in
the semantic structure, which occur due to the assumption
that each word in the word chain has to be assigned to one
single semun. This module provides

• insertion of missing and necessary information (e.g. the
semun of the recently modified object),

• deletion of redundant information (e.g. all semuns after
an irrelevant "garbage semun"),

• splitting – if possible – a semantic structureS into sepa-
rate semantic structuresS1, S2, ... each stating an inde-
pendent and complete command. For example, thisS cor-
responding to the word chain"create a yellow sphere and
two cones" is divided intoS1 andS2 as shown in fig. 7:

The preprocessed semantic structure(s)  can be
seen as programs in the source language of the compiler, its
output is a program in the application-specific language. We
call the latter theuser’s intention, since it does not only re-
flect semantic aspects in the utterance, but it is also influ-
enced by the present status of the application.

The task of thecompiler therefore is to translate anested
semantic structure tree into alinear code within the applica-

Fig. 6: Block diagram of the intention decoder

Fig. 7: The preprocessor: Splitting a semantic structureS.
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tion-specific language. Since a main part of a semantic
structure’s information is held in thetopology of the tree, it
is not possible to transform each semun individually into
one block of the output code. Instead, atop-up approach is
introduced [2], by propagating context knowledge down
into the tree from the root to the leaves and subsequently
collecting the information required for generating the in-
tention in the reverse way.

5. PORTABILITY

One main benefit of the chosen architecture is the portabi-
lity of the speech understanding front-end, which is ena-
bled by adapting the distributed knowledge about the do-
main and the application itself.

To provide the stochastic knowledge needed for the seman-
tic decoding process, first a set of semun types and values
has to be determined, which covers the semantics of the do-
main. Then the grammar can be trained iteratively using
data collected by a Wizard-of-Oz simulation [5]. Updating
the rule-based knowledge needed for intention decoding
should be usually possible by easily adding further rules,
which are stored in external files. However, if new mecha-
nisms have to be realized or if the intention decoder has to
be switched to follow another output syntax, one can’t
avoid to change the implementation of the semantic pre-
processor and the compiler.

6. RECENT RESULTS

6.1  Accuracy Evaluation

For assessing both the formalism of the semantic structure
and our one-stage semantic decoder, we compared the se-
mantic accuracy rates obtained with our one-stage system
and the conventional two-stage approach. The latter con-
sists of a semantic decoder for text input and a precon-
nected speech recognizer, delivering the first-best word
chainW:

Thesemantic accuracy is defined as the rate of correct con-
versions of the observation sequencesO into the correspond-
ing semantic structuresS, evaluated on a certain test corpus.
The results shown in tab. 1 were obtained with a test set con-
sisting of 164 utterances out of the NASGRA-domain.

Fig. 8: IntentionI for the semantic structureS1 of fig. 7

Fig. 9: Comparison of a one-stage and a two-stage decoder
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For the first experiments (DISJOINT), the probabilistic
knowledge bases have been trained on 1643 utterances dis-
joint to the test corpus of 164 utterances. Even though Out-
of-Vocabulary (OOV) occurences (see [6]) have been ex-
cluded, the DISJOINT-test is the more relevant for practi-
cal use of the speech understanding system.

The other experiments (RECLASS) were taken out as re-
classification, using knowledge bases (i.e. the grammar and
the acoustic-phonetic models), which have been trained on
a corpus of 1843 utterances containing the 164 utterances
assubset. The resulting vocabulary contains 853 words.

In the DISJOINT-case, the one-stage system outperforms
the two stage, probably due to the better generalization
abilities of our grammar and the missing of consistency
problems between the two stages. In the RECLASS-case,
the two stage-system does better, because all the utterances
in the test set have been seen in the training, so that gener-
alization is rather disadvantageous in this artificial case.

The intention decoder for the NASGRA-domain has been
tested with 1843 semantic structures. Theintention accu-
racy (correct conversion of a semantic structureS into its
intentionI) amounts to97.3% [2]. The respective intention
accuracy for the ROMAN-domain even results in100% [3].

6.2  Trade-Off between Efficiency and Accuracy
Concerning the experiments in chap. 6.1, the parameters of
the semantic decoder have been optimized to gain maxi-
mum semantic accuracy. However, the accuracy stands in
concurrence with memory and computing efficiency. A
very sensitive parameter is the pruning-offset, which influ-
ences the beam width of the search process.

Fig. 10 clearly shows the trade-off between the semantic ac-
curacy and the search effort for the RECLASS-experiment
with our one-stage decoder. Maximum accuracy is gained
by choosing a pruning offset of 200, taking on average
about 22 seconds of CPU workload (on a SUN-
UltraSPARC, 168 MHz) for semantic decoding.

training set one-stage system two-stage system
DISJOINT 88.4% 86.0%
RECLASS 93.3% 95.9%

Tab. 1: Semantic accuracy rates

Fig. 10: System performance depending on the beam width
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7. CONCLUSION
A integral system for understanding natural spoken com-
mands was presented, which can be easily adopted to dif-
ferent domains and applications. For the NASGRA-do-
main, we achieved a semantic accuracy of 88.4% for
disjoint test and training corpora. Note, that these results
are much better than those reported in [10], since now we
incorporated contemporary acoustic models from [11].
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An online version of NASGRA for natural German text in-
put is available on WWW. Please be aware of OOV errors:
http://www.mmk.e-technik.tu-muenchen.de/~mue/nasgra/


