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ABSTRACT

This paper describes a technique for reduction of
non-stationary noise in electronic voice communication sys-
tems. Removal of noise is needed in many such systems,
particularly those deployed in harsh mobile or otherwise
dynamic acoustic environments. The proposed method
employs state-based statistical models of both speech and
noise, and is thus capable of tracking variations in noise
during sustained speech. This work extends the hidden
Markov model (HMM) based minimum mean square error
(MMSE) estimator to incorporate a ternary voicing state,
and applies it to a harmonic representation of voiced speech.
Noise reduction during voiced sounds is thereby improved.
Performance is evaluated using speech and noise from stan-
dard databases. The extended algorithm is demonstrated to
improve speech quality as measured by informal preference
tests and objective measures, to preserve speech intelligibil-
ity as measured by informal Diagnostic Rhyme Tests, and to
improve the performance of a low bit-rate speech coder and
a speech recognition system when used as a pre-processor.

1. INTRODUCTION

Speech communication in mobile environments is often dif-
�cult due to high-energy ambient noise. The reduction in
speech quality due to noise is known to cause listener fa-
tigue. Moreover, speech intelligibility is severely reduced
when low-energy, perceptually important speech is masked
by high-energy noise. Speech enhancement algorithms at-
tempt to improve these perceptual aspects of degraded
speech. In addition to improving speech quality or intelligi-
bility for the human listener, speech enhancement prepro-
cessors can improve the performance of other speech pro-
cessing algorithms. For example, the accuracy of speech
recognition algorithms used for \hands-free" dialing of mo-
bile cellular telephones is severely reduced when speech is
corrupted by background noise. In this situation, a speech
enhancement preprocessor can be added to improve recog-
nition accuracy. In addition, speech compression algorithms
typically used in digital cellular telephones perform poorly
in noisy environments, especially when coding at low bit-
rates. A speech enhancement preprocessor can be employed
in this case to decrease loss in the coder.

In [1], an MMSE speech enhancement approach using
hidden Markov models (HMMs) for both speech and noise
sources was proposed. It has been recognized as one of the

most promising methods to date. In particular, the fact
that this method uses a noise model that can capture the
dynamic behavior of the short-term noise statistics is par-
ticularly signi�cant. This paper extends the HMM-based
MMSE estimator to incorporate a ternary voicing state and
uses a harmonic representation for improved noise suppres-
sion during voiced speech.

2. HMM-BASED SPEECH ENHANCEMENT

The following notation is used. Let y and v be zero mean,
statistically independent speech and noise processes, respec-
tively. Corresponding non-overlapping blocks of time sam-
ples are denoted yt and vt where t is a time index. Speech
and noise are assumed to be additively combined and their
sum is denoted zt. The upper case symbols Yt and Zt

represent the discrete Fourier transforms of yt and zt, re-
spectively. The DFT components of Yt and Zt are Yt(k)
and Zt(k) where k = 0; :::; K � 1.
In [1], Ephraim derived a MMSE estimate of the clean

speech DFT component,
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where �z is an N -state, M -mixture autoregressive hid-
den Markov model (ARHMM [2]) of noisy speech, M =
f0; :::;M � 1g, N = f0; :::; N � 1g, xt is the HMM
state at time t, ut is the HMM mixture at time t,
Z�e = z0 : : : zt+�e�1, and the estimation delay in blocks,
�e � 0, determines the number of future observations
included. The joint state/mixture probability, P (xt =
j; ut = mjZ�e ; �z), is computed using the well-known HMM
\forward-backward" recursion [2]. The conditional mean
within the summation in (1) is calculated, assuming circu-
lant speech and noise covariance matrices (Cy
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F is the DFT matrix.
Providing that the HMM �z is well-trained, the HMM-

based MMSE estimator outperforms other algorithms (e.g.,
spectral subtraction) in terms of SNR improvement and
subjective quality [3, 4]. In addition, the method can
cope with noise variations between pauses in speech when



the number of noise states is greater than one. However,
at SNRs below 15 dB, the processed speech exhibits a
\low-level, structured residual noise," particularly for high-
pitched speakers [1].

3. EXTENSION OF THE HMM-BASED MMSE

ESTIMATOR

The residual noise associated with the HMM-based MMSE
estimator is most perceptible in voiced segments of speech.
Therefore, we propose an extension of this method that
incorporates voicing and pitch information in order to im-
prove voiced regions. Let st be the voicing state of yt,
taking on values V (voiced), UV (unvoiced), or NS (non-
speech). De�ne 
k(�) as the event that the frequency cor-
responding to the kth DFT bin lies within (�=2)!0 radians
of a multiple of the fundamental frequency !0 when speech
is voiced. The parameter, 0 � � � 1, is chosen such that
speech energy contained in DFT bins whose center frequen-
cies are not within (�=2)!0 of a harmonic is negligible. The
MMSE estimator may be written in terms of st and 
k(�)
as
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where puv = P (st = UVjxt = j; ut = m; zt; �

z) and
pv = P (st = Vjxt = j; ut = m; zt; �

z). Equation (3)
may be further simpli�ed by approximating the expected
values in the second and third terms of the sum within the
square brackets using the expected value that is uninformed
of voicing. This results in

EfYt(k)jzt; �zg �
X
j2N

X
m2M

�(j;m; k; �; zt)

� P (xt = j; ut = mjZ�e ; �z)EfYt(k)jxt = j; ut = m; zt; �
zg
(4)

where

�(j;m; k; �; zt) =
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(5)

The extended estimator di�ers from that of [1] by addition
of the factor �(j;m; k; �; zt). An alternative formulation
is obtained by rewriting (5) in terms of the a posteriori
probability of speech.

�(j;m; k; �; zt) =
(P (
k(�)jxt = j; ut = m; st = V; zt; �z)� 1) � pv + ps

(6)

where ps = P (st = NSjxt = j; ut = m; zt; �
z). To im-

plement (6) two simpli�cations are made. The �rst simpli-
fying approximation is justi�ed by observing the behavior
of the original HMM-based algorithm. When speech is not
present, the products in (1) are almost always very close
to zero for well-trained models. Therefore, assuming that
implicit speech detection is accomplished reasonably well,

e�(j;m; k; �; zt) =
1 + [P (
k(�)jxt = j; ut = m; st = V; zt; �z)� 1] � pv

(7)

Table 1. Total SNR for F-16 aircraft noise.

Input MMSE Algorithm SNR (dB)
SNR Mean StdDev Min Max

10 13.22 0.52 11.80 14.21
5 9.70 0.63 7.90 10.84
0 6.36 0.69 4.62 7.56

Input Extended MMSE Method SNR (dB)
SNR Mean StdDev Min Max �

10 13.84 0.70 12.14 15.24 0.89
5 10.14 0.75 8.16 11.53 0.79
0 6.63 0.74 4.78 8.05 0.70

provides approximately the same results. The second sim-
plifying approximation uses average harmonic and voicing
probabilities instead of those conditioned on state / mixture
occupancy.

b�(j;m; k; �; zt) =
1 + [P (
k(�)jst = V; zt; �z)� 1] � P (st = Vjzt; �z)

(8)

The �nal approximation (8) is much simpler to imple-
ment than (7) since it requires that harmonic status and
voicing probabilities be calculated once per block instead
of NyMyNvMv times per block. Furthermore, the sim-
pli�cation in (8) is intuitively appealing since (8) and (7)
are equivalent if voicing and harmonic status are indepen-
dent of the hidden Markov model state and mixture. Since
ARHMMs essentially model the average spectral shape of
speech, the dependence of voicing and harmonic status upon
HMM state and mixture is at most mild. Therefore the sec-
ond simpli�cation is not unreasonable. For implementation,
voicing probability and harmonic status are computed us-
ing a pitch detection algorithm such as that described in [5].
In addition, zero-padding is used to increase the size of the
DFTs so that the regions de�ned by � are su�ciently well
separated. The value of � is chosen empirically to maximize
the output SNR over the training set.

4. SELECTED RESULTS

Three noise reduction simulation experiments were con-
ducted to evaluate the performance of the extended esti-
mator. The speech models used in all the simulations were
8-state, 5-mixture ARHMMs of order py = 12. Noise mod-
els used in the experiments were trained with noise from
the NOISEX-92 database. Noisy speech was created by ar-
ti�cially adding speech and noise. In the �rst experiment,
noisy speech processed using the original MMSE estima-
tor and the extended estimator were compared in terms of
SNR and listener preference. Second, the intelligibility of
noisy speech processed with a low bit-rate coder was mea-
sured using the Diagnostic Rhyme Test (DRT) [8]. The
e�ect of noise reduction on intelligibility was investigated
by comparing DRT results when the extended estimator
and the spectral subtraction algorithm [6] were used as pre-
processors. Finally, the original and extended estimators
were tested as pre-processors for automatic speech recogni-
tion.
Table 1 shows the output SNR when noisy speech is

processed using the original and extended MMSE estima-
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Figure 1. Segmental SNR at 0 dB input SNR for a

female speaker.

tors. The noise model was trained using F-16 cockpit noise
from the NOISEX-92 database at levels corresponding to 0
dB, 5 dB, and 10 dB average SNR when speech is present
(Nv = 3, Mv = 3, pv = 4). Noisy speech models were cre-
ated by combining each of the noise models with a speech
model trained using sentences from 100 speakers in the
TIMIT database. For testing, noise was added to sentences
from another 60 speakers from TIMIT and the noisy �les
were processed. The mean, minimum, maximum and stan-
dard deviation of the output SNR is shown for each input
SNR. The harmonic widening parameter � used in the ex-
tended estimator is also shown in the table.

These simulations were repeated using Lynx cockpit noise
(Nv = 3, Mv = 3, pv = 20), operations room noise
(Nv = 5, Mv = 5, pv = 12), and \speech-shaped" noise
(Nv = 1, Mv = 3, pv = 4) from the NOISEX-92 database.
In each case, a similar increase in output SNR with respect
to the original algorithm was measured. Increased SNR is a
good indication of the performance of noise reduction algo-
rithms based on waveform matching in the mean squared er-
ror sense. Improvement in SNR for the type of interference
involved here was almost always accompanied by perceptual
improvement. Although the improvement in average output
SNR was small (less than one dB), there was a noticeable
improvement in speech quality due to better noise suppres-
sion during voiced regions. This is further illustrated by
Figure 1. The �gure shows the SNR per block for speech-
shaped noise added at 0 dB SNR to a sentence spoken by a
female speaker. The text of the sentence is shown at the top
of the plot. As much as 2 dB improvement is shown in Fig-
ure 1 during voiced segments. In particular, /�/, /e/, /u/,
and /l/ are most improved. The degradation in segmental
SNR during /s/ is due to erroneous voicing decisions. The
degradation is small relative to the overall improvement of
/s/ and is not audibly perceptible.

An \A/B" preference test was conducted with a panel
of �fteen listeners. Three female/male pairs of sentences
from the test set were selected at random. Each pair
was concatenated, corrupted with noise, and processed us-
ing the original MMSE estimator, the extended estima-
tor, and spectral subtraction. The processed and unpro-
cessed records were presented to the listeners in randomly-
ordered pairs. Table 2 shows the percentage of the trials �̂

Table 2. Percentage of listeners that preferred

speech from the extended MMSE algorithm.

Speech-Shaped Noise SNR % Pref (�̂) ��̂

Unprocessed 5dB 71.4 8.5
MMSE 5dB 85.7 6.6
Spectral Subtraction 5dB 75.0 8.2
Unprocessed 0dB 71.4 8.5
MMSE 0dB 71.4 8.5
Spectral Subtraction 0dB 67.9 8.8

Operations Room Noise SNR % Pref (�̂) ��̂

Unprocessed 5dB 67.9 8.8
MMSE 5dB 85.7 6.6
Spectral Subtraction 5dB 64.3 9.1
Unprocessed 0dB 67.9 8.8
MMSE 0dB 64.3 9.1
Spectral Subtraction 0dB 53.6 9.4

Table 3. Adjusted DRT Scores.

Speech-Shaped Noise

SNR Noisy SSUB EMMSE
0.0 25.62 34.98 37.44
5.0 58.13 56.40 60.34

Operations Room Noise

SNR Noisy SSUB EMMSE
0.0 47.78 48.03 56.16
5.0 62.07 63.05 56.90

in which listeners preferred speech processed using the ex-
tended MMSE estimator over that processed by the other
algorithms or the noisy speech. An estimate of the stan-

dard deviation ��̂ =
p
�(1� �)=J is given in the rightmost

column. J is the number of trials. In every case the ma-
jority of the listeners preferred speech processed using the
extended estimator. In most cases the 95% con�dence in-
terval [�̂ � 1:96��̂; �̂ + 1:96��̂] lies entirely above the 50%
mark.

The listeners were interviewed following completion of the
test. Most found the speech produced by the HMM-based
algorithms to be most comfortable to listen to because the
background noise was strongly attenuated. However, listen-
ers generally disliked the rough residual noise of the orig-
inal algorithm and that remaining in the speech from the
extended estimator. The listeners were sharply divided in
their opinion of the so-called \musical" residual noise pro-
duced by the spectral subtraction method. Some found it
very objectionable while others described it as quite toler-
able. In some cases, listeners chose the noisy speech simply
because it was free of processing artifacts.

In addition to the experiments using speech from the
TIMIT database, several simulations were carried out on
the DRT word lists available from Dynastat, Inc. In this
case, the goal was to evaluate the extended estimator as
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Figure 2. Alphabet recognition performance.

a pre-processor for low bit-rate speech compression. Low
bit-rate speech coders often exhibit artifacts and poor per-
formance when deployed in harsh acoustic environments.
Noise reduction pre-processing is aimed at preventing these
artifacts and restoring coder performance. The speech
coder used in these experiments was the 2400 bps sinusoidal
transform coder (STC) developed at MIT Lincoln Labs [7].

The DRT described in [8] was carried out with a panel
of thirteen listeners. Two sets of test data were prepared:
one corrupted with speech-shaped noise and another with
operations room noise. Each set consisted of 4 six-minute
recordings. The initial 90 seconds of each was used to train
an eight state speech model. Noise was added to the re-
mainder of each recording. The noise level was 0 dB for
two of the recordings and 5 dB for the remaining two. Each
pair contained speech from one adult female and one adult
male. The third 90-second segment of each recording was
then processed using spectral subtraction. The extended
estimator was used to process the �nal 90 seconds of each
record. The resulting speech �les were coded and decoded
using the 2.4 Kbps STC. The original MMSE estimator was
not evaluated due to the limited size of the data set and be-
cause it di�ers from the extended estimator mainly during
vowels. Recognition of vowels is not tested by the DRT.

Figure 3 shows the intelligibility scores (adjusted for ran-
dom guessing) obtained by informal DRT evaluation of the
output of the STC decoder. Seven listeners were used in
each case. One of the thirteen listeners participated in
both tests. At 0 dB input SNR, STC speech with extended
MMSE pre-processing is more intelligible than both noisy
speech and speech processed with spectral subtraction prior
to coding. Similar results were obtained at 5 dB SNR for
speech-shaped noise. However, for operations room noise
at 5 dB SNR, speech processed by the extended method
is less intelligible. In this case, the background noise was
completely removed but portions of some initial stop con-
sonants (e.g., /b/) were removed along with the noise. This
suggests that it may be important to weaken the suppres-
sion rule in applications where intelligibility is paramount.
However, considering the small number of listeners involved
in the test and the fact that most of the listeners had no
prior experience with tests such as the DRT, these results
should be interpreted cautiously.

Finally, the extended estimator was evaluated as a pre-

processor to the HMM-based isolated alphabet recognizer
described in [9]. The performance of the recognizer was
evaluated using the OGI Telephone Speech Database of
Spelled and Spoken Names. The training set consisted of
the letters of the alphabet uttered once by �fty speakers
(25 male, 25 female). An embedded training procedure was
used whereby context-independent phoneme models were
�rst trained and used to initialize the context-dependent
phoneme models. The test set consisted of the letters of
the alphabet spoken by an additional set of 25 male and 25
female speakers. White Gaussian noise was added to the
test set at several SNRs. Figure 2 shows the recognition
accuracy with and without pre-processing. A 20% increase
in the percentage of correct recognitions was achieved over
most of the noise levels. The fact that the original and ex-
tended MMSE estimators performed about the same is not
surprising since recognition features model spectral shape
rather than �ne spectral structure.

5. REMARKS

This paper has outlined an improved HMM-based speech
enhancement algorithm. Results were presented in terms
of SNR improvement, informal listener preference scores,
informal DRT scores when the algorithm is used as a pre-
processor for a low bit-rate speech coder, and recognition
performance when the algorithm is used as a preprocessor
for an alphabet recognition system.
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