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ABSTRACT

This paper presents two new algorithms for robust
speech pause detection (SPD) in noise. Our approach was
to formulate SPD into a statistical decision theory prob-
lem for the optimal detection of noise-only segments,
using the framework of model-based speech enhancement
(MBSE). The advantages of this approach are that it per-
forms well in high noise conditions, all necessary
information is available in MBSE, and no other features
are required to be computed. The first algorithm is based
on a maximum a posteriori probability (MAP) test and
the second is based on a Neyman-Pearson test. These tests
are seen to make use of the spectral distance between the
input vector and the composite spectral prototypes of the
speech and noise models, as well as the probabilistic
framework of the hidden Markov model. The algorithms
are evaluated and shown to perform well against different
types of noise at various SNRs.

1. INTRODUCTION

Accurate detection of noise-only frames in a noisy
speech signal, or speech pause detection, is important to
many applications such as continuous speech recognition
and speech enhancement. Noise can cause severe degra-
dation in recognition tasks, and SPD is required for pre-
recognition noise reduction or recognizer model adapta-
tion. SPD is also needed for computing the noise estimate
in many speech enhancement systems. Moving-Average
Adaptation based on Vector Quantization (MAA-VQ) [2],
requires SPD to adapt the noise model in model based
speech enhancement [1] for non-stationary noise envi-
ronments.

Recent algorithms for segmentation of speech do not
address noisy conditions and are often iterative schemes
not applicable for low-delay communications systems [3].
Previous non-iterative methods, e.g. [4]-[5], are signifi-
cantly degraded by noise or require training under noise
conditions identical to those to be encountered by the
system. The solution proposed in [6] requires pitch
tracking, is limited by the number of class prototypes al-
lowed, and the performance was not validated. A Voiced-

Unvoiced classifier for noisy conditions used pitch esti-
mation [7], but pause detection was not included. A
variation on that approach used the ratio of unvoiced-to-
voiced energies before and after enhancement to reclassify
unvoiced segments as pauses [8]. This technique has the
disadvantage that the thresholds are empirically derived
for a limited number of speech/noise combinations and
the thresholds are unpublished. Word boundary detection
algorithms developed for isolated word/utterance recog-
nition [9] are not suitable for speech enhancement
because the assumption of a single beginning and a single
end point does not apply to continuous speech. A tech-
nique based on adaptive thresholds attempts to overcome
this limitation [10], but it does not perform well for high
noise levels unless a two-pass enhancement scheme is
used.

The SPD algorithms developed here are optimal detec-
tors based on statistical decision theory, which take
advantage of the information computed in model based
speech enhancement (MBSE). They are therefore advan-
tageous for use with MBSE, but are also applicable for
use in other applications. The detectors are based on
maximum a posteriori probability (MAP) and Neyman-
Pearson (NP) tests which are optimal for the constructed
models and received data. They are seen to make use of a
spectral distance between the input vector and the com-
posite spectral prototypes of the speech and noise models
as well as the probabilistic framework of the hidden
Markov Model (HMM), which has proven very useful for
many speech processing applications. These SPD algo-
rithms overcome the shortcomings of previous solutions
that rapidly degrade in noise, or rely on arbitrary features,
heuristic procedures, experimentally derived thresholds,
or pitch estimation and tracking. Extensive evaluations
are performed, and the detectors are shown to perform
well in a variety of noise environments. When used in
conjunction with MAA-VQ, they are shown to perform
well even in high levels of non-stationary noise.

2. MODEL BASED SPEECH ENHANCEMENT

MBSE estimates clean speech from noisy speech based
on parametric mixture HMMs of the clean speech and



noise processes trained via the generalized Lloyd algo-
rithm. The clean speech HMM λs is generated off-line
(prior to the enhancement process) from extensive train-
ing data in order to faithfully represent the set of speech
prototypes to be encountered. Additionally, a "silence"
state is generated from training data frames with total
energy 30 dB below the average of all clean speech
frames. The noise HMM λv is generated from a period of
noise-only data at the beginning of the noisy speech.

In the model based minimum mean-square error ap-
proach (MB-MMSE) [1], the clean speech is estimated by
filtering the noisy speech with an aggregate filter con-
structed from the weighted sum of the composite mixture
Wiener filters. The composite mixture filters are con-
structed from the spectral prototypes of the speech and
noise in each composite speech/noise model mixture
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where βt and 
~βt are the clean speech and noise states,

respectively, at time t, and γ and ~γ are the corresponding
mixtures for the clean speech and noise states. The spec-
tral prototype of the composite mixture is given by
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where Sβt,γ is the spectral prototype of the clean speech,
S~βt,

~γ is the spectral prototype of the noise, and Gt
2 is a

global gain factor computed to match the input signal
power to the clean speech model. The weights for each
composite state are simply the conditional probabilities
q(–αt | λs, λv, z0

t) of the composite mixture given the clean
speech and noise models and the noisy input data from
time 0 to time t. They are computed from the forward-
backward formulas [1, eqns 8-10] in conjunction with the
probability that the input vector at time t was generated
by composite mixture –αt
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where Zt(θ) represents the DFT of the noisy speech vector
zt normalized by K1/2.

3. OPTIMAL SPEECH PAUSE DETECTORS

The SPD problem can now be formulated into a likeli-
hood ratio test. An (M+1)-hypotheses test is indicated for
clean speech silence state βsil corresponding to the null
hypothesis H0 and the other clean speech states 1,...,M
corresponding to alternative hypotheses. The SPD-MAP
solution results when equal costs are assumed:
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The posterior probability given the noisy speech data is
computed by summing the conditional probability over all
composite mixtures containing the clean speech silence
state βsil
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where Lsil is the number of silence mixtures in the clean
speech codebook and 

~
M and 

~
L are the number of states

and mixtures in the noise codebook, respectively. Here,
for the purpose of clarity, we have not shown the depend-
ence on the clean speech and noise models.

The spectral distance between the gain-normalized
input vector and the composite speech/noise spectral
prototypes is seen to enter the computation explicitly via
the last term in (3). Thus the detector compares the actual
second-order statistics of the data versus the models,
rather than arbitrary features. It is also superior to the
approach outlined in [4], since that technique only had a
single template for each class. Additionally, the Mark-
ovian nature of the speech prototypes is reflected in the
probabilistic framework of the HMM, and enters the
computation explicitly through the forward-backward
formulas.

The MAP solution may be inappropriate for applica-
tions in which there is an unequal cost of making one
type of error over another. These include noise model
adaptation for MBSE [2], which requires false alarms to
be low in order to prevent the noise model from being
retrained with speech data (we define false alarms as er-
rors in which the SPD classifies a given frame as a pause
when it in fact contains speech). In this case, it is desir-
able to trade missed detections for decreased false alarm
rate. A Neyman-Pearson test (SPD-NP) can be formulated
by considering a single alternative hypothesis. Since

p z p zt sil
t

t sil
t(   ) ( =   ),β β β β≠ = −0 01 (6)

the likelihood ratio test reduces to comparison of the
probability of clean speech silence to a threshold
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where the threshold η is chosen to yield a given maxi-
mum false alarm probability.

4. EVALUATIONS

The SPD-MAP and SPD-NP algorithms were evalu-
ated for additive white Gaussian (AWGN) and pink noise,
and a slightly non-stationary Lynx helicopter noise envi-
ronment (from the NOISEX-92 set, RSG.10 NOISE-
ROM-0), at SNRs from -5 to 30 dB. The MB-MMSE



system used an 8 state × 32 mixture (plus a silence state
with 32 mixtures) clean speech codebook of order 10
trained on 300 sentences from the TIMIT database, and
an 8×1 noise codebook of order 50. Eighteen sentences
from six different speakers in the TIMIT database were
used in testing. The test set consisted of a total of 2403
frames of data, of which 651 were manually identified as
pauses. The test speakers and sentences were different
from those used in training. The resulting SPD is
smoothed using a median filter of length 5.

The SPD-MAP algorithm was seen to be effective over
all noise types and SNRs examined, as shown in Figure 1.
An error rate less than 2.3% is achieved for input SNRs
of 30 dB. This surpasses the results presented in [3]
(2.4% error rate under no noise, rapidly degraded in
noise) and [4] (2.5% error rate under quiet telephone line
conditions). As noted in [4], many of the errors are made
in transition frames, which can contain speech as well as
a partial pause. If desired, these false alarm errors can be

prevented by discarding the first and last frames of each
identified pause to achieve the results presented in Figure
2, where error rates less than 1.4% are achieved, with
graceful degradation at lower SNRs.

The Neyman-Pearson solution is an alternative
method of reducing false alarms. The receiver operating
curves (ROCs) for SPD-NP are shown in Figure 3. There
it is seen that good detection results can be achieved
while maintaining low probability of false alarm, PF. Ta-
ble I gives the results for SPD-NP in AWGN using a
threshold η=0.4. The detection errors are tabulated for
frames identified as “Silence” or “Speech.” Errors in the
Silence column indicate false alarms, whereas error in the
Speech column indicate missed detections. The results
show good detection performance while maintaining PF
at or below 1.1% for all SNRs tested.

A final evaluation was performed using F16 jet engine
noise which exhibits significant non-stationarity in power
and frequency content, making SPD difficult. A 3-
dimensional spectrogram of this noise environment is
shown in Figure 4. This type of environment exemplifies
the variations in noise characteristics found in common
applications, for which typical SPD schemes will fail.
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Figure 3.  Receiver Operating Curves of SPD-NP in AWGN
at input SNRs of 30, 20, 10, 0 and -5 dB.

TABLE I
PERFORMANCE OF SPD-NP IN AWGN, THRESHOLD  η = 0.4.

Detection Errors
Input SNR

(dB)
Silence
(651)

Speech
(1752)

Total
(2403)

Probability
of Error

30 43 14 57 0.024
20 51 17 68 0.028
10 74 73 147 0.061
0 71 183 254 0.106
-5 60 321 381 0.159
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Figure 1.  Performance of SPD-MAP.
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Figure 2.  Performance of SPD-MAP, excluding transition
frames.



However, when used in conjunction with noise model
adaptation (MAA-VQ), the SPD-NP detector with
threshold η=0.4 continues to reliably detect pauses even
at the lowest SNRs. These results are shown in Figure 5.

5. CONCLUSIONS

The speech pause detection problem was formulated
into a decision theory framework based on models of the
speech and noise processes, and optimal MAP and NP
detectors were developed. The detectors were shown to
perform well even at low SNRs. The method, when used
in conjunction with MAA-VQ, was also shown to be ef-
fective for non-stationary environments. The same
detection framework might be used for a more generic
segmentation of speech into other categories such as
voiced/unvoiced/pause by using additional information
extracted from the clean speech model training procedure.

Additionally, a clean speech HMM containing a si-
lence state trained with data specifically identified as non-
speech can yield more accurate results than the one
trained using the energy threshold described in [1] and
used in this work.

REFERENCES

[1] Y. Ephraim, "A Bayesian estimation approach for speech
enhancement using hidden Markov models." IEEE Trans.
Signal Processing, vol. 40, no. 4, pp. 725-735, April 1992.

[2] B. L. McKinley and G. H. Whipple, "Noise model adap-
tation in model-based speech enhancement," Proc. 1996
IEEE ICASSP (Atlanta), May 1996, pp. 633-636.

[3] E. Vidal and A. Marzal, "A review and new approaches
for automatic segmentation of speech signals," Signal
Processing V, L. Torres, E. Masgrau and M. A. Lagunas
(eds). Elsevier Science Publishers B V. 1990.

[4] B. S. Atal and L. R. Rabiner, "A pattern recognition ap-
proach to voiced-unvoiced-silence classification with
applications to speech recognition," IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 24, no. 3, pp. 201-212,
June 1976.

[5] L. R. Rabiner and M. R. Sambur, "Application of an LPC
distance measure to the Voiced-Unvoiced-Silence detec-
tion problem," IEEE Trans. Acoust., Speech, Signal
Processing, vol. 25, no. 4, pp. 338-343, Aug. 1977.

[6] R. J. McAuley, "Optimum classification of voiced speech,
unvoiced speech and silence in the presence of noise and
interference," MIT Lincoln Lab., Lexington, MA, Tech.
Note 1976-7, June 1976.

[7] D. A. Krubsack and R. J. Niederjohn, "An autocorrelation
pitch detector and voicing decision with confidence meas-
ures developed for noise-corrupted speech," IEEE Trans.
Acoust., Speech, Signal Processing, vol. 39, pp. 319-328,
Feb. 1991.

[8] H. Sheikhzadeh, R. L. Brennan, and H. Sameti, "Real-
time implementation of HMM-based MMSE algorithm for
speech enhancement in hearing aid applications," Proc.
1995 IEEE ICASSP (Detroit), May 1995, pp. 808-811.

[9] J.-C. Junqua, B. Mak and B. Reaves, "A robust algorithm
for word boundary detection in the presence of noise,"
IEEE Trans. Speech and Audio Processing, vol. 2, no. 3,
pp. 406-412, July 1994.

[10] J. H. L. Hansen, "A new speech enhancement algorithm
employing acoustic endpoint detection and morphological
based spectral constraints," Proc. 1991 IEEE ICASSP
(Toronto), May 1991, pp. 901-904.

0
1000

2000
3000

4000 0
10

20
30

40
−20

0

20

40

freq. (Hz) time (sec)

P
ow

er
 (

dB
)

Figure 4.  Spectrogram of F16 noise from NOISEX-92.
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Figure 5. Operation of SPD-NP (η=0.4) in non-stationary F16
noise. (a) 11 sentences of speech with no noise; (b) manually
identified pauses; (c)-(e) SPD-NP at input SNRs of 10, 0 and
-5 dB, respectively.


