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ABSTRACT Unvoiced classifier for noisy conditions usgitich esti-
mation [7], but pause detectiowas not included. A
variation on that approaalsedthe ratio ofunvoiced-to-
voiced energies before and after enhancement to reclassify
unvoiced segments as pauses P8iis technique has the
disadvantagehat thethresholds are empiricallglerived
for a limited number of speech/noise combinations and
the thresholds are unpublished. Waxalindary detection
algorithmsdeveloped for isolated word/utterance recog-
nition [9] are not suitablefor speech enhancement
because the assumption of a single beginaimd asingle

nd pointdoesnot apply to continuous speech. A tech-
%}%ue based on adaptive thresholds attempts/éocome
this limitation [10],but it doesot performwell for high
noise levels unless a two-passhancement scheme is
used.

The SPD algorithms developed here are optiestc-
tors based on statistical decision theory, which take
advantage of the informatiocomputed in model based
speech enhancement (MBSE). Thag thereforedvan-

1. INTRODUCTION tageous for use with MBSE, bate also applicable for

Accurate detection of noise-only frames innaisy use _in other appl?cqtionsThg_detectorsare based on
speechsignal, orspeech pause detection, is important to Maximuma posteriori probability (MAP) and Neyman-
many applications such as continuous speech recognitio’ €arson (NP) tests which are optirfal the constructed
and speech enhancememoise can cause severe degra- Modelsandreceiveddata. Theyare seen to makese of a
dation in recognition taskend SPD is required for pre-  SPectral distance betwe¢hne inputvectorand the com-
recognition noise reduction or recognizer model adapta-POSite Spectral prototypes tbfe speechandnoise models
tion. SPD is also needed for computithg noise estimate 25 well asthe probab|I|§tlc framework of the hidden
in many speech enhancemesystems. Moving-Average Markov Model (HMM), _whmhhasprc_wenvery useful for
Adaptation based on Vector Quantization (MAA-VQ) [2], Many speech processing applications. These SPD algo-
requires SPD to adaphe noise model in modbhsed rithms qvercomethe _shortpommgs quewou_s solutions
speech enhancement [1] for non-stationary noise envi-that _rap|dly degrade in noise, or rely on arbltrary features,
ronments. heuristic procedures, experimentally derived thresholds,

Recent algorithms for segmentation of speech do not" pitch estimationand trackingExtensive evaluations
address noisy conditiorend areoften iterative schemes aré performedand thedetectorsare shown to perform
not applicable fofow-delay communications syster#j. well in a variety of noise environmenté/hen used in
Previous non-iterative methodeg. [4]-[5], are signifi- ~ conjunction with MAA-VQ, theyare shown to perform
cantly degraded by noise or requiraining undemoise well even in high levels of non-stationary noise.
conditions identical to those to be encountered by the
system. The solutionproposed in [6] requires pitch 2. MODEL BASED SPEECH ENHANCEMENT
tracking, is limited by the number of clagsototypes al-
lowed,and theperformance wagot validated. A/oiced-

This paper presentsvo newalgorithms for robust
speech pause detection (SPD) in noe:. approach was
to formulate SPD into a statistical decision theory prob-
lem for the optimal detection ofoise-only segments,
using the framework ahodel-based speech enhancement
(MBSE). The advantages tifis approach are that it per-
forms well in high noise conditions,all necessary
information is available in MBSEand no othefeatures
are required to beomputed. The first algorithm tsased
on a maximum a posteriori probability (MAP) test and
the second is based on a Neyman-Pearson test. These te
are seen to makase ofthe spectral distandetween the
input vectorand thecomposite spectral prototypes of the
speechand noise models, as well ahe probabilistic
framework of the hidden Markov model. The algorithms
are evaluatedndshown to perform wekgainst different
types of noise at various SNRs.

MBSE estimates clean speech from noisy speech based
on parametric mixtureHMMs of the clearspeech and



noise processesained via the generalizedoyd algo-
rithm. Theclean speechHMM Aq is generated off-line
(prior to the enhancemeptocess) from extensiveain-
ing data in order tdaithfully represent the set gpeech
prototypes to be encountered. Additionally, a "silence
state is generated fromnaining dataframes with total
energy 30 dBbelow the average dill cleanspeech
frames. The noiselMM A, is generated from a period of
noise-only data at the beginning of the noisy speech.

In the modelbasedminimum mean-square error ap-
proach (MB-MMSE) [1]the clearspeech is estimated by
filtering the noisy speectwith an aggregate filter con-
structed from the weighted sum of tbemposite mixture
Wiener filters. Thecompositemixture filters are con-
structed from the spectrgirototypes ofthe speech and
noise in each composite speech/noise model mixture
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where 3; and [3; are the clearspeechand noise states,
respectively, at timg andy andy are the corresponding
mixtures forthe clearspeechandnoise states. The spec-
tral prototype of the composite mixture is given by

%)= $,,O)+ §0)/6F,

where g,y is the spectraprototype ofthe clearspeech
S,y is the spectraprototype ofthe noiseand Gt is a
global gain factor computed tonatch the input signal
power tothe clearspeech modelThe weightdor each
composite statare simply the conditional probabilities
g0 [ As Ay z(t)) of thecompositemixture given the clean
speechand noise modelsand thenoisy input datafrom
time O to timet. They are computed fronthe forward-
backward formulas [1, eqns 8-10] in conjunction with the
probability that the inputvector at timet was generated
by composite mixture;
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whereZ,(8) represents the DFT of tlmisy speech vector
z normalized byk /2
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3. OPTIMAL SPEECH PAUSE DETECTORS

The SPD problentannow be formulateéhto a likeli-
hood ratio test. AnM+1)-hypotheses test is indicated for
clean speech silence stfig, corresponding to thaull
hypothesisHy and the otheclean speech statds...M
corresponding to alternative hypotheséle SPD-MAP
solution results when equal costs are assumed:
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The posteriomprobability giventhe noisy speecldata is

. computed by summing the conditioqaibbability over all

composite mixturegontaining the cleaispeech silence
statef;
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whereLg; is the number of silence mixtures in the clean
speechcodebookand M andL are the number oftates
and mixtures in the noiseodebook, respectively. Here,
for the purpose of clarity, we have not shown the depend-
ence on the clean speech and noise models.

The spectral distancbetweenthe gain-normalized
input vector and thecomposite speech/noise spectral
prototypes is seen &nter the computatioaxplicitly via
the last term in (3). Thus the detector compares the actual
second-order statistics of the datarsusthe models,
rather thanarbitrary features. It is also superior to the
approach outlined in [4], sindbat technique onlyhad a
single template for each class. Additionalthe Mark-
ovian nature of thespeech prototypes is reflected in the
probabilistic framework of thedMM, and enters the
computation explicitly through the forward-backward
formulas.

The MAP solution may bénappropriate for applica-
tions in which there is an unequedst of making one
type of error over another. These include noiseodel
adaptation for MBSE [2], which requires falarms to
be low inorder to prevent the noise model from being
retrained withspeechdata(we define falsalarms as er-
rors in which theSPD classifies a given frame as a pause
when it in fact contains speech). this case, it is desir-
able to trade missed detections for decreased digdsm
rate. A Neyman-Pearson test (SPD-NP) can be formulated
by considering a single alternative hypothesis. Since

P % Bsit | 2)=1- PP =Bsii | %) (6)

the likelihood ratio testreduces to comparison of the
probability of clean speech silence to a threshold

HO
(B =Bsi | 20) > N, (7)

where the threshold is chosen to yield a given maxi-
mum false alarm probability.

4. EVALUATIONS

The SPD-MAP and SPD-NPalgorithmswere evalu-
ated for additive white Gaussian (AWGN) and pink noise,
and aslightly non-stationary Lynx helicopter noise envi-
ronment (from the NOISEX-92 set, RSG.MNDISE-
ROM-0), at SNRs from -5 to 30 dB.he MB-MMSE
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Figure 1. Performance of SPD-MAP.
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Figure 2. Performance of SPD-MAP, excluding transition
frames.
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Figure 3. Receiver Operating Curves of SPD-NP in AWGN
at input SNRs of 30, 20, 10, 0 and -5 dB.
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TABLE |
PERFORMANCE OFSPD-NPIN AWGN, THRESHOLD n = 0.4.

Detection Errors

Input SNR  Silence Speech Total Probability
(dB) (651) (1752) (2403) of Error
30 43 14 57 0.024
20 51 17 68 0.028
10 74 73 147 0.061
0 71 183 254 0.106
-5 60 321 381 0.159

prevented by discarding the firahd lasframes of each
identified pause to achievbe results presented in Figure
2, where error ratekessthan 1.4% are achieved, with
graceful degradation at lower SNRs.

The Neyman-Pearson solution is an alternative
method of reducing falsalarms. Thereceiver operating

trained on 300 sentences from the TIMIT database, ancturves (ROCs) for SPD-N&e shown in Figure 3. There
an &1 noisecodebook oforder 50. Eighteen sentences it is seenthat good detectiorresults can beachieved

from six different speakers in the TIMIT databagere

while maintaininglow probability of falsealarm,Pg. Ta-

used in testingThe test set consisted of a total of 2403 ble | givesthe result§or SPD-NP in AWGNusing a

frames of data, of which 65&ere manually identified as
pauses. The test speakensd sentences were different
from those used intraining. The resultingSPD is
smoothed using a median filter of length 5.

The SPD-MAP algorithm was seen toddéective over

thresholdn=0.4. The detection errors are tabulated for
frames identified as “Silence” or “Speeclifrors in the
Silence column indicate false alarms, whereas error in the
Speech column indicate missed detectiofise results
show good detection performance whibaintaining Pg

all noise types and SNRs examined, as shown in Figure lat or below 1.1% for all SNRs tested.

An error ratelessthan2.3% is achieved foinput SNRs

A final evaluationwas performedising F16 jet engine

of 30 dB. This surpasses the results presented in [3] noise which exhibits significant non-stationaritypower
(2.4% error rate under no noise, rapidly degraded inand frequency contentmaking SPD difficult. A 3-
noise)and[4] (2.5% error rate under quiet telephone line dimensional spectrogram of thisise environment is
conditions). As noted in [4], many of the errors are made shown in Figure 4This type ofenvironment exemplifies
in transition frames, which can contapeech as well as the variations in noise characteristics foundcommon

a partial pause. If desired, thdaésealarm errors can be  applications, for which typical SPD schemes will fail.
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Figure 4. Spectrogram of F16 noise from NOISEX-92.

However, when used in conjunction with noise model

adaptation (MAA-VQ),

the SPD-NP detector with

thresholdn=0.4 continues to reliably detect pauss®n
at the lowest SNRs. These results are shown in Figure 5.

5. CONCLUSIONS

into a decision theory framewobiased on models of the
speechand noise processesnd optimal MAP and NP
detectors were developetihe detectors were shown to
perform well even aiow SNRs.The method, whensed
in conjunction with MAA-VQ, was also shown to be ef-

fective for non-stationary environments.

The same

detection frameworkmight beused for a more generic
segmentation of speech into other categories such asyg)
voiced/unvoiced/pause bysing additional information
extracted from the clean speech model training procedure.

Additionally, a clean speecHMM containing a si-
lence state trained with data specifically identified as non- [7]
speechcan yield more accurate resulthan the one
trained using thesnergy threshold described in [1] and
used in this work.
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