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ABSTRACT

Speech quality and intelligibility might signi�cantly de-

teriorate in the presence of background noise, especially

when the speech signal is subject to subsequent processing.

In this paper we represent a class of Kalman-�lter based

speech enhancement algorithms with some extensions, mod-

i�cations, and improvements. The �rst algorithm employs

the estimate-maximize (EM) method to iteratively estimate

the spectral parameters of the speech and noise parame-

ters. The enhanced speech signal is obtained as a byprod-

uct of the parameter estimation algorithm. The second al-

gorithm is a sequential, computationally e�cient, gradient

descent algorithm. We discuss various topics concerning the

practical implementation of these algorithms. Experimen-

tal study, using real speech and noise signals is provided to

compare these algorithms with alternative speech enhance-

ment algorithms, and to compare the performance of the

iterative and sequential algorithms.

1. INTRODUCTION

Speech quality and intelligibility might signi�cantly de-

teriorate in the presence of background noise, especially

when the speech signal is subject to subsequent processing.

Speech enhancement algorithms have therefore attracted a

great deal of interest in the past two decades [1], [2], [3], [4],

[5], [6], [7], [8].

Lim and Oppenheim [5] have suggested to model the

speech signal as a stochastic auto-regressive (AR) model

embedded in additive white Gaussian noise, and use this

model for speech enhancement. The proposed algorithm is

iterative in nature. It consists of estimating the speech AR

parameters by solving the Yule-Walker equations using the

current estimate of the speech signal, and then apply the

(non-causal) Wiener �lter to the observed signal to obtain

an hopefully improved estimate of the desired speech signal.

It can be shown that the version of the algorithm which uses

the covariance of the speech signal estimate, given at the

output of the Wiener �lter, is in fact the estimate-maximize

(EM) algorithm for the problem at hand. As such, it is

guaranteed to converge to the maximum likelihood (ML)

estimate of the AR parameters, or at least to a local maxi-

mum of the likelihood function, and to yield the best linear

�ltered estimate of the speech signal, computed at the ML

parameter estimate.

Weinstein et al. [7] presented a time-domain formula-

tion to the problem at hand. Their approach consists of

representing the signal model using linear dynamic state

equation, and apply the EM method. The resulting algo-

rithm is similar in structure to the Lim and Oppenheim [5]

algorithm, only that the non-causal Wiener �lter is replaced

by the Kalman smoothing equations. In addition to that,

sequential speech enhancement algorithms are presented in

[7]. These sequential algorithms are characterized by a for-

ward Kalman �lter whose parameters are continuously up-

dated. In [8] similar methods were proposed for the related

problem of multi-sensor signal enhancement. Lee et al. [4]

extended the sequential single sensor algorithm of Wein-

stein et al. by replacing the white Gaussian excitation of

the speech signal with a mixed Gaussian term that may ac-

count for the presence of an impulse train in the excitation

sequence of voiced speech. Lee et al. examined the signal to

noise ratio (SNR) improvement of the algorithm when ap-

plied to synthetic speech input. They also provide limited

results on real speech signals.

The use of Kalman �ltering was previously proposed by

Paliwal and Basu [6] for speech enhancement, where experi-

mental results reveal its distinct advantage over the Wiener

�lter, for the case where the estimated speech parameters

are obtained from the clean speech signal (before being cor-

rupted by the noise). Gibson et al. [2] proposed to extend

the use of the Kalman �lter by incorporating a colored noise

model in order to improve the enhancement performances

for certain class of noise sources. A disadvantage of the

above mentioned Kalman �ltering algorithms is that they

do not address the model parameters estimation problem.

Koo and Gibson [3] suggested an algorithm that iterates be-

tween Kalman �ltering of the given corrupted speech mea-

surements, and estimation of the speech parameters given

the enhanced speech waveform. The resulting algorithm is

in fact an approximated EM algorithm.

In this paper we represent the iterative-batch and sequen-

tial algorithms that were presented in [7] with some exten-

sions, modi�cations, and improvements, and discuss vari-

ous topics concerning the practical implementation of these

algorithms. We also compare the performance of the sug-

gested algorithms to existing algorithms in the literature.

This discussion is supported by experimental study using

recorded speech signals and actual noise sources.



2. THE SIGNAL MODEL

Let the signal measured by the microphone be given by:

z(t) = s(t) + v(t) (1)

where s(t) represents the sampled speech signal, and v(t)

represents additive background noise.

We shall assume the standard LPC modeling for the

speech signal over the analysis frame, in which s(t) is mod-

eled as a stochastic AR process, i.e.

s(t) = �
pX

k=1

�ks(t� k) +
p
gsu(t) (2)

where the excitation u(t) is a normalized (zero mean unit

variance) white noise, gs represents the spectral level, and

�1; : : : ; �p are the AR coe�cients. We may incorporate the

more detailed voiced speech model suggested in [9] in which

the excitation process is composed of a weighted linear com-

bination of an impulse train and a white noise sequence to

represent voiced and unvoiced speech respectively. How-

ever, as indicated in [10], this approach did not yield any sig-

ni�cant performance improvements over the standard LPC

modeling.

The additive noise v(t) is also assumed to be a realization

from a zero mean possibly non-white stochastic AR process:

v(t) = �
qX

k=1

�kv(t� k) +
p
gvw(t) (3)

where �1; : : : ; �q are are the AR parameters of the noise

process, and gv represents its power level. Many of the

actual noise sources may be closely approximated as low

order, all-pole (AR) processes, in which case a signi�cant

improvement may be achieved by incorporating the noise

model into the estimation process as indicated in [2], [10].

Following straight-forward

algebra manipulations, Eqs. (1) - (3) may be represented

in the following state-space form:

x(t) = �x(t� 1) +Gr(t)

z(t) = h
T
x(t)

where the state vector x(t) is de�ned by:

x
T
(t) =

�
sTp�1(t� 1) s(t) vTq�1(t� 1) v(t)

�

where

sp(t) =
�
s(t� p+ 1) s(t� p+ 2) : : : s(t)

�T

vq(t) =
�
v(t� q + 1) v(t� q + 2) : : : v(t)

�T

�, h and G may be expressed in terms of the model param-

eters.

Assuming that all the signal and noise parameters are

known, which implies that �, h and G are known, the op-

timal (minimum mean square error) linear state estimate,

which includes the desired speech signal s(t), is obtained

using the Kalman smoothing equations. However, since the

signal and noise parameters are not known a-priori, they

must also be estimated within the algorithm.

3. EM - BASED ALGORITHM

Applying the EM method to the problem at hand, and fol-

lowing the considerations in [11], [7] (see also [8] that con-

siders the two channel case), we obtain an algorithm that

iterates between state estimation (E-step) and parameter

re-evaluation (M-step). The E-step is implemented by using

the Kalman �ltering equations. The M-step is implemented

by using a non-standard YW equation set, in which corre-

lations are replaced by their a-posteriori values, that are

calculated by using the Kalman smoothing equations. The

enhanced speech is obtained as a byproduct of the E-step.

Since the algorithm is based on the EM method, it is

guaranteed to converge monotonically to the ML estimate

of all unknown parameters (under Gaussian assumptions),

or at least to a local maximum of the likelihood function,

where each iteration increases the likelihood of the estimate

of the parameters. As a byproduct, it yields the optimal

linear state (signal) estimate, computed using the estimated

parameters.

This algorithm is an extension of the algorithm presented

in [7] for the case in which the additive noise is modeled

more generally as a colored AR process. Since the sig-

nal and the noise parameter estimates are computed sep-

arately within the algorithm, the increase in computational

complexity is quite moderate. However, the realizable im-

provement in the enhancement performance may be quite

signi�cant, as indicated in [2], [10].

In order to reduce the computations involved, we sug-

gest to replace the full smoothing operation with �xed-lag

smoothing (delayed Kalman �lter estimate) [6] or even just

by �ltering. As indicated in [10], the resulting algorithm

still maintains its nice monotonic convergence behavior.

A simpli�ed EM algorithm may be obtained by itera-

tively estimating the speech parameters using the enhanced

speech signal (by employing the ordinary YW equation set),

and then using these parameters to improve the estimate of

the enhanced signal (the noise parameters are estimated,

using signal segments at which voice activity is assumed

not to be present). This simpli�ed EM algorithm was sug-

gested by Koo et al. [3]. We found that unlike the EM

algorithm, which is guaranteed to be stable and to mono-

tonically increase the likelihood function, the simpli�ed EM

algorithm does not possess such properties. The simpli�ed

EM algorithm results in performance degradation, which is

very signi�cant at the lower SNR range. Similar behavior

was noticed by Lim and Oppenheim [5] in the context of

an iterative Wiener �lter algorithm for the enhancement of

speech in the presence of white Gaussian noise.

4. PARAMETER ESTIMATION USING
HIGHER-ORDER STATISTICS

To obtain a reliable estimate of the speech signal, it is essen-

tial to have a powerful initialization algorithm for the speech

and noise parameters. Otherwise, the algorithm might con-

verge to a local minimum of the likelihood function. When

the SNR is high, an initial estimate of the speech parame-

ters may be obtained using standard LPC processing, and

an initial estimate of the noise parameters may be obtained

by employing a voice activity detector, so that the noise

statistics are accumulated during silence periods.



Unfortunately, this initialization procedure breaks down

at low SNR conditions, below 5 dB in our experiments.

However, if the additive noise v(t) is assumed to be Gaus-

sian, then higher-order statistics (HOS) may be incorpo-

rated in order to improve the initial estimate of the speech

parameters as follows. It can be shown (by invoking basic

cumulant properties and recalling (1), (2)) that

cum(z(t); z(t� l1); : : : ; z(t� lM)) =

�
pX

k=1

�kcum(z(t� k); z(t� l1); : : : ; z(t� lM ))

whenever M � 2, where cum(�; �; : : :) denotes the joint cu-
mulant of the bracketed variables. For M = 1 we obtain

the standard Yule-Walker equations based on second-order

statistics. However, in this case the equations do not hold

because of the contribution of the additive noise, and this is

why the parameter initialization breaks down at low SNR.

For M � 2 we obtain additional Yule-Walker type equa-

tions that are insensitive to the presence of additive Gaus-

sian noise. These equations appear to be very useful if the

additive noise is \more Gaussian" than the speech signal

in the sense that its higher-order cumulants are relatively

small in magnitude.

In practice the cumulants are approximated by substitut-

ing the unavailable ensemble averages with sample averages,

thus obtaining a set of linear equations that may be used

to compute the AR parameters �1; : : : ; �p directly from the

observed signal z(t).

Experimental results using actual speech signal in several

typical noise environments indicated that at low SNR con-

ditions, below 5 dB, using fourth-order cumulants (M = 3)

one typically obtains a better and more robust initial esti-

mate of the speech parameters as compared with the con-

ventional LPC approach based on second-order statistics.

The use of third-order cumulants (M = 2), was not that

e�ective.

5. SEQUENTIAL ALGORITHM

The iterative-batch EM algorithm requires the use of an

analysis window over which the signal and noise statistics

are assumed to be stationary. To avoid this assumption,

we used a sequential speech enhancement algorithm which

is more computationally e�cient than the iterative-batch

algorithm. Another bene�t of the sequential algorithm is

that it is delay-less, unlike the iterative-batch algorithm

that has an inherent delay of one processing window frame.

Our sequential algorithm is a gradient based algorithm,

similar to the algorithm suggested in [7] (see also [8], that

considers the two-channel case). This algorithm consists of

a forward Kalman �lter whose parameters are continuously

up-dated. An improvement in the convergence behavior of

the algorithm was obtained by normalizing the step sizes,

i.e. using a normalized gradient search algorithm.

6. EXPERIMENTS

In order to evaluate the performance of the proposed algo-

rithms, both objective and subjective tests were conducted.

In the experiments that we describe below, the speech sig-

nal was degraded by additive computer-fan noise, at various

SNRs. This noise source is typical of an o�ce environment.

It was found to obey the Gaussian assumption with a good

degree of approximation.

Fig. 1 presents the median value of Itakura-Saito (IS)

measurements obtained by using two sentences (the dura-

tion of the �rst was 25 seconds; the duration of the second

was 5 seconds). The algorithms that were examined were

the proposed iterative-batch algorithm, the sequential al-

gorithm and the log spectral amplitude estimator (LSAE)

algorithm, suggested by Ephraim and Malah [1] (which is an

improvement of the short time spectral amplitude (STSA)

estimator algorithm suggested by the same authors). As

can be seen, the results indicate that the iterative-batch

algorithm is superior both to the sequential algorithm and

to the LSAE algorithm, especially at SNRs above 5 dB. At

SNRs below -5 dB the performances of the iterative-batch

and sequential algorithms are essentially identical. Simi-

lar results were obtained when we considered the total and

segmental SNR measures.
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Figure 1. Median Itakura-Saito distortion measure

ASR experiments were conducted using a continuous den-

sity hidden Markov model (HMM) based speech recognition

system, developed in our laboratory. The speech database

was the speaker independent, high quality connected digits

recorded at TI (TIDIGITS).

The digit recognition rate of the system when subject to

speech signals contaminated by computer fan noise at vari-

ous SNRs is summarized in Fig. 2. We also show the corre-

sponding recognition rate, when the noisy speech is pre-

processed by the iterative-batch enhancement algorithm

and by the LSAE algorithm. As can be seen, the iterative-

batch algorithm improves the performance by between 4 to



8 dB. The iterative-batch algorithm shows superior perfor-

mance compared to the LSAE algorithm, especially at the

very low and very high SNR range. In fact, at the higher

SNR range the LSAE algorithm degrades the performance

of the recognizer.
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Figure 2. Single digits recognition rate with prepro-
cessing (iterative-batch and LSAE) and without.

The experimental results presented demonstrate the su-

perior performance of the iterative-batch algorithm com-

pared to both the sequential and LSAE algorithms. How-

ever, as long as the SNR is not too high, the performance

of the sequential algorithm is close to the performance of

the iterative-batch algorithm. These conclusions were also

supported by informal speech quality tests, and by the as-

sessment of sound spectrograms.
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